Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator.(English)Zbl 0870.60071

The classical theorem of Myers on diameter \([M]\) states that if \((M,g)\) is a complete, connected Riemannian manifold of dimension \(n\) \((\geq 2)\) such that \(\text{Ric}\geq(n-1)g\), then its diameter \(D=D(M)\) is less than or equal to \(\pi\). The authors prove an analogue of Myers’s theorem for an abstract Markov generator and provide at the same time a new analytic proof of this result based on Sobolev inequalities. In particular, how to get exact bounds on the diameter in terms of the Sobolev constant is shown.

MSC:

60J35 Transition functions, generators and resolvents
47D07 Markov semigroups and applications to diffusion processes

Cite

References:

[1]S. Aida, T. Masuda, and I. Shigekawa, Logarithmic Sobolev inequalities and exponential integrability , J. Funct. Anal. 126 (1994), no. 1, 83-101. ·Zbl 0846.46020 ·doi:10.1006/jfan.1994.1142
[2]Th. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations , Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. ·Zbl 0512.53044
[3]D. Bakry, Inégalités de Sobolev faibles: un critère \(\Gamma_ 2\) , Séminaire de Probabilités, XXV, Lecture Notes in Math., vol. 1485, Springer, Berlin, 1991, pp. 234-261. ·Zbl 0745.60084
[4]D. Bakry, L’hypercontractivité et son utilisation en théorie des semigroupes , Lectures on probability theory (Saint-Flour, 1992), Lecture Notes in Math., vol. 1581, Springer, Berlin, 1994, pp. 1-114. ·Zbl 0856.47026
[5]D. Bakry and D. Michel, Inégalités de Sobolev et minorations du semi-groupe de la chaleur , Ann. Fac. Sci. Toulouse Math. (5) 11 (1990), no. 2, 23-66. ·Zbl 0731.46015 ·doi:10.5802/afst.702
[6]W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality , Ann. of Math. (2) 138 (1993), no. 1, 213-242. JSTOR: ·Zbl 0826.58042 ·doi:10.2307/2946638
[7]I. Chavel, Riemannian geometry-a modern introduction , Cambridge Tracts in Mathematics, vol. 108, Cambridge University Press, Cambridge, 1993. ·Zbl 0810.53001
[8]J. Cheeger, The relation between the Laplacian and the diameter for manifolds of non-negative curvature , Arch. Math. (Basel) 19 (1968), 558-560. ·Zbl 0177.50201 ·doi:10.1007/BF01898781
[9]S.-Y. Cheng, Eigenvalue comparison theorems and its geometric applications , Math. Z. 143 (1975), no. 3, 289-297. ·Zbl 0329.53035 ·doi:10.1007/BF01214381
[10]E. Fontenas, Sur les constantes de Sobolev des variétés riemanniennes compactes et les fonctions extrémales des sphères , to appear in Bull. Sci. Math. (2).
[11]S. Gallot, D. Hulin, and J. Lafontaine, Riemannian geometry , Universitext, Springer-Verlag, Berlin, 1990. ·Zbl 0716.53001
[12]S. Ilias, Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes compactes , Ann. Inst. Fourier (Grenoble) 33 (1983), no. 2, 151-165. ·Zbl 0528.53040 ·doi:10.5802/aif.921
[13]M. Ledoux, Remarks on logarithmic Sobolev constants, exponential integrability and bounds on the diameter , J. Math. Kyoto Univ. 35 (1995), no. 2, 211-220. ·Zbl 0836.60074
[14]S. B. Myers, Connections between differential geometry and topology , Duke Math. J. 1 (1935), 376-391. ·Zbl 0012.27502 ·doi:10.1215/S0012-7094-35-00126-0
[15]M. Obata, Certain conditions for a Riemannian manifold to be iosometric with a sphere , J. Math. Soc. Japan 14 (1962), 333-340. ·Zbl 0115.39302 ·doi:10.2969/jmsj/01430333
[16]O. S. Rothaus, Hypercontractivity and the Bakry-Emery criterion for compact Lie groups , J. Funct. Anal. 65 (1986), no. 3, 358-367. ·Zbl 0589.58036 ·doi:10.1016/0022-1236(86)90025-X
[17]V. A. Toponogov, Riemann spaces with curvature bounded below , Uspehi Mat. Nauk 14 (1959), no. 1 (85), 87-130. ·Zbl 0114.37504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp