Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Strong and weak duality for fractal dimension in Euclidean space.(English)Zbl 0866.28004

Let \(X\) be a metric space, \(\mu\) a finite Borel measure on \(X\) and \(\alpha^-_\mu\), \(\alpha^+_\mu\) the lower, resp. upper pointwise dimension maps defined on \(X\). If \(A\subset \mathbb{R}^d\) and \({\mathcal P}(A)\) the probability measures on \(A\) then the author proves two representations of the Hausdorff and packing dimension \(\dim A\), resp. \(\text{Dim }A\) in terms of \(\alpha^-_\mu\) and \(\alpha^+_\mu\). The first one is called the weak duality principle and the second one, which holds for non-empty analytic sets \(A\), the strong duality principle. These results appear as corollaries to the extended Frostman resp. antiFrostman lemmas proved by the author. The main difference to the traditional Frostman lemma is the use of dyadic cubes instead of balls. Finally, the connection to the information dimension and the variational principle due to the author and Olsen is established.

MSC:

28A78 Hausdorff and packing measures
28A80 Fractals

Cite

References:

[1]Munroe, Measure and integration (1971) ·Zbl 0227.28001
[2]Rogers, Hausdorff measures (1970)
[3]DOI: 10.1007/BF01017978 ·Zbl 0738.58029 ·doi:10.1007/BF01017978
[4]Cutler, Ergodic Theory Dynamical Systems 10 pp 451– (1990) ·Zbl 0691.58023 ·doi:10.1017/S014338570000568X
[5]Cutler, Canad. J. Math. 38 pp 1459– (1986) ·Zbl 0598.28013 ·doi:10.4153/CJM-1986-071-9
[6]DOI: 10.1016/0001-8708(92)90064-R ·Zbl 0763.58018 ·doi:10.1016/0001-8708(92)90064-R
[7]DOI: 10.1007/BF01055700 ·Zbl 0892.28006 ·doi:10.1007/BF01055700
[8]Billingsley, Convergence of probability measures (1968) ·Zbl 0172.21201
[9]Billingsley, Illinois J. Math. 5 pp 291– (1961)
[10]Billingsley, Illinois J. Math. 4 pp 187– (1960)
[11]DOI: 10.1016/0167-2789(90)90028-N ·Zbl 0698.60021 ·doi:10.1016/0167-2789(90)90028-N
[12]Kahane, Some random series of functions (1985)
[13]Haase, Acta Universitatis Carolinae ? Mathematica et Physica 28 pp 59– (1987)
[14]Haase, Mathematika 33 pp 129– (1986)
[15]Frostman, Meddel. Lunds Univ. Mat. Sem. 3 pp 1– (1935)
[16]DOI: 10.1016/0167-2789(83)90125-2 ·doi:10.1016/0167-2789(83)90125-2
[17]Dudley, Real analysis and probability (1989) ·Zbl 0686.60001
[18]Davies, Indagat. Math. 14 pp 488– (1952) ·doi:10.1016/S1385-7258(52)50068-4
[19]Cutler, Math. Scand. 74 pp 64– (1994) ·Zbl 0808.28005 ·doi:10.7146/math.scand.a-12480
[20]Cutler, Illinois J. Math.
[21]Cutler, Supplemento ai Eendiconti del Circolo Matematico di Palermo, Series II 28 pp 319– (1992)
[22]Young, Ergodic Theory Dynamical Systems 2 pp 109– (1982)
[23]Walters, An introduction to ergodic theory (1982) ·Zbl 0475.28009 ·doi:10.1007/978-1-4612-5775-2
[24]Tricot, Math. Proc. Camb. Philos. Soc. 91 pp 57– (1982)
[25]DOI: 10.2307/1999958 ·Zbl 0537.28003 ·doi:10.2307/1999958
[26]Taylor, Math. Proc. Camb. Philos. Soc. 100 pp 383– (1986)
[27]Rogers, Mathematika 8 pp 1– (1961)
[28]DOI: 10.2307/1990191 ·Zbl 0060.14002 ·doi:10.2307/1990191
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp