Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Analysis and convergence of a covolume method for the generalized Stokes problem.(English)Zbl 0854.65091

Summary: We introduce a covolume or MAC-like method for approximating the generalized Stokes problem. Two grids are needed in the discretization; a triangular one for the continuity equation and a quadrilateral one for the momentum equation. The velocity is approximated using nonconforming piecewise linears and the pressure piecewise constants. Error in the \(L^2\) norm for the pressure and error in a mesh dependent \(H^1\) norm as well as in the \(L^2\) norm for the velocity are shown to be of first order, provided that the exact velocity is in \(H^2\) and the true pressure in \(H^1\). We also introduce the concept of a network model into the discretized linear system so that an efficient pressure-recovering technique can be used to simplify a great deal the computational work involved in the augmented Lagrangian method. Given is a very general decomposition condition under which this technique is applicable to other fluid problems that can be formulated as a saddle-point problem.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows
35B45 A priori estimates in context of PDEs
35J50 Variational methods for elliptic systems

Cite

References:

[1]R. Amit, C. A. Hall, and T. A. Porsching, An application of network theory to the solution of implicit Navier-Stokes difference equations, J. Comput. Phys. 40 (1981), no. 1, 183 – 201. ·Zbl 0452.76024 ·doi:10.1016/0021-9991(81)90206-0
[2]Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. ·Zbl 0788.73002
[3]Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. ·Zbl 0804.65101
[4]S. H. Chou, A network model for incompressible two-fluid flow and its numerical solution, Numer. Methods Partial Differential Equations 5 (1989), no. 1, 1 – 24. ·Zbl 0669.76130 ·doi:10.1002/num.1690050102
[5]-, A network model for two-fluid flow, Proceedings of the 5th International Conference on Reactor Thermal Hydraulics, American Nuclear Society, Vol. VI, Salt Lake City, Utah, 1992, pp. 1607-1614. ·Zbl 0825.94013
[6]S. Choudhury and R. A. Nicolaides, Discretization of incompressible vorticity-velocity equations on triangular meshes, Internat. J. Numer. Methods Fluid Dynamics 11 (1990). ·Zbl 0704.76016
[7]M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33 – 75. ·Zbl 0302.65087
[8]Michel Fortin and Roland Glowinski, Augmented Lagrangian methods, Studies in Mathematics and its Applications, vol. 15, North-Holland Publishing Co., Amsterdam, 1983. Applications to the numerical solution of boundary value problems; Translated from the French by B. Hunt and D. C. Spicer. ·Zbl 0525.65045
[9]Lucia Gastaldi and Ricardo Nochetto, Optimal \?^{\infty }-error estimates for nonconforming and mixed finite element methods of lowest order, Numer. Math. 50 (1987), no. 5, 587 – 611. ·Zbl 0597.65080 ·doi:10.1007/BF01408578
[10]Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. ·Zbl 0585.65077
[11]Roland Glowinski and Patrick Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM Studies in Applied Mathematics, vol. 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. ·Zbl 0698.73001
[12]C. A. Hall, J. C. Cavendish, and W. H. Frey, The dual variable method for solving fluid flow difference equations on Delaunay triangulations, Comput. & Fluids 20 (1991), no. 2, 145 – 164. ·Zbl 0729.76047 ·doi:10.1016/0045-7930(91)90017-C
[13]C. A. Hall, T. A. Porsching and G. L. Mesina, On a network method for unsteady incompressible fluid flow on triangular grids, Internat. J. Numer. Methods Fluids 15 (1992), 1383-1406. ·Zbl 0825.76445
[14]F. H. Harlow and F. E. Welch, Numerical calculations of time dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids 8 (1965), 2181. ·Zbl 1180.76043
[15]R. A. Nicolaides, Direct discretization of planar div-curl problems, SIAM J. Numer. Anal. 29 (1992), no. 1, 32 – 56. ·Zbl 0745.65063 ·doi:10.1137/0729003
[16]R. A. Nicolaides, Analysis and convergence of the MAC scheme. I. The linear problem, SIAM J. Numer. Anal. 29 (1992), no. 6, 1579 – 1591. ·Zbl 0764.76051 ·doi:10.1137/0729091
[17]R. A. Nicolaides, T. A. Porsching and C. A. Hall, Covolume methods in computational fluid dynamics, Computational Fluid Dynamics Review , Wiley, New York, 1995, pp. 279-299. ·Zbl 0875.76410
[18]T. A. Porsching, Error estimates for MAC-like approximations to the linear Navier-Stokes equations, Numer. Math. 29 (1977/78), no. 3, 291 – 306. ·Zbl 0352.65057 ·doi:10.1007/BF01389214
[19]-, A network model for two-fluid flow, Numer. Methods Partial Differential Equations 1 (1985), 295-313. ·Zbl 0637.76112
[20]Gilbert Strang, Introduction to applied mathematics, Wellesley-Cambridge Press, Wellesley, MA, 1986. ·Zbl 0618.00015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp