Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Software for simplified Lanczos and QMR algorithms.(English)Zbl 0853.65041

The paper describes Fortran-77 implementations of some simplified versions of the three-term and coupled two-term Lanczos algorithm and the associated quasi-minimal residual (QMR) iteration algorithms for general \(J\)-symmetric and \(J\)-Hermitian matrices. These implementations represent counterparts to the algorithms already contained in the authors software package QMRPACK.
Section 2 briefly reviews the Lanczos process and the QMR method. In Section 3, the general concept of simplified Lanczos algorithms is discussed, and a few examples are given. In Section 4, the authors describe implementation issues for the simplified algorithms. Section 5 considers one of the algorithms in more detail. In Section 6, a list of the implemented simplified algorithms is given. Section 7 describes an example driver for two of the algorithms, and in Section 8, results of numerical experiments are reported. In Section 9, the authors make some concluding remarks.

MSC:

65F10 Iterative numerical methods for linear systems
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15-04 Software, source code, etc. for problems pertaining to linear algebra

Software:

QMRPACK

Cite

References:

[1]Axelsson, O., A survey of preconditioned iterative methods for linear systems of algebraic equations, BIT, 25, 166-187 (1985) ·Zbl 0566.65017
[2]Bunch, J. R.; Parlett, B. N., Direct methods for solving symmetric indefinite systems of linear equations, SIAM J. Numer. Anal., 8, 639-655 (1971) ·Zbl 0199.49802
[3]Chan, R. H.; Strang, G., Toeplitz equations by conjugate gradients with circulant preconditioner, SIAM J. Sci. Statist. Comput., 10, 104-119 (1989) ·Zbl 0666.65030
[4]Cullum, J. K.; Willoughby, R. A., (Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. 1: Theory (1985), Birkhäuser: Birkhäuser Basel) ·Zbl 0574.65028
[5]Cullum, J. K.; Willoughby, R. A., A practical procedure for computing eigenvalues of large sparse nonsymmetric matrices, (Cullum, J.; Willoughby, R. A., Large Scale Eigenvalue Problems (1986), North-Holland: North-Holland Amsterdam), 193-240 ·Zbl 0605.65027
[6]Dongarra, J. J.; Grosse, E. H., Distribution of mathematical software via electronic mail, Comm. ACM, 30, 403-407 (1987)
[7]Eisenstat, S. C., Efficient implementation of a class of preconditioned conjugate gradient methods, SIAM J. Sci. Statist. Comput., 2, 1-4 (1981) ·Zbl 0474.65020
[8]Feldmann, P.; Freund, R. W., Efficient linear circuit analysis by Padé approximation via the Lanczos process, (Proceedings EURO-DAC ’94 with EURO-VHDL ’94 (1994), IEEE Computer Society Press: IEEE Computer Society Press Los Alamitos), 170-175
[9]Freund, R. W., Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices, SIAM J. Sci. Statist. Comput., 13, 425-448 (1992) ·Zbl 0761.65018
[10]Freund, R. W., A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput., 14, 470-482 (1993) ·Zbl 0781.65022
[11]Freund, R. W., Transpose-free quasi-minimal residual methods for non-Hermitian linear systems, (Golub, G.; Greenbaum, A.; Luskin, M., Recent Advances in Iterative Methods. Recent Advances in Iterative Methods, The IMA Volumes in Mathematics and its Applications, 60 (1994), Springer: Springer New York), 69-94 ·Zbl 0804.65032
[12]Freund, R. W., The look-ahead Lanczos process for nonsymmetric matrices and its applications, (Brown, J. D.; Chu, M. T.; Ellison, D. C.; Plemmons, R. J., Proceedings of the Cornelius Lanczos International Centenary Conference (1994), SIAM: SIAM Philadelphia, PA), 33-47 ·Zbl 1260.65025
[13]Freund, R. W., Lanczos-type algorithms for structured non-Hermitian eigenvalue problems, (Brown, J. D.; Chu, M. T.; Ellison, D. C.; Plemmons, R. J., Proceedings of the Cornelius Lanczos International Centenary Conference (1994), SIAM: SIAM Philadelphia, PA), 243-245
[14]Freund, R. W.; Golub, G. H.; Nachtigal, N. M., Iterative solution of linear systems, Acta Numer., 1, 57-100 (1992) ·Zbl 0762.65019
[15]Freund, R. W.; Gutknecht, M. H.; Nachtigal, N. M., An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput., 14, 137-158 (1993) ·Zbl 0770.65022
[16]Freund, R. W.; Jarre, F., A QMR-based interior-point algorithm for solving linear programs, (Numerical Analysis Manuscript 94-19 (1994), AT&T Bell Laboratories: AT&T Bell Laboratories Murray Hill, NJ) ·Zbl 0824.90127
[17]also:Math. Programming (to appear); also:Math. Programming (to appear)
[18]Freund, R. W.; Mehrmann, V., A symplectic look-ahead Lanczos algorithm for the Hamiltonian eigenvalue problem, (Numerical Analysis Manuscript (1995), AT&T Bell Laboratories: AT&T Bell Laboratories Murray Hill, NJ)
[19]Freund, R. W.; Nachtigal, N. M., QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer. Math., 60, 315-339 (1991) ·Zbl 0754.65034
[20]Freund, R. W.; Nachtigal, N. M., An implementation of the QMR method based on coupled two-term recurrences, SIAM J. Sci. Comput., 15, 313-337 (1994) ·Zbl 0803.65036
[21]Freund, R. W.; Nachtigal, N. M., QMRPACK: a package of QMR algorithms, (Numerical Analysis Manuscript 94-16 (1994), AT&T Bell Laboratories: AT&T Bell Laboratories Murray Hill, NJ) ·Zbl 0884.65027
[22]also:ACM Trans. Math. Software (to appear); also:ACM Trans. Math. Software (to appear)
[23]Freund, R. W.; Szeto, T., A transpose-free quasi-minimal residual squared algorithm for non-Hermitian linear systems, (Vichnevetsky, R.; Knight, D.; Richter, G., Advances in Computer Methods for Partial Differential Equations, VII (1992), IMACS: IMACS New Brunswick, NJ), 258-264
[24]Freund, R. W.; Zha, H., Simplifications of the nonsymmetric Lanczos process and a new algorithm for Hermitian indefinite linear systems, (Numerical Analysis Manuscript (1995), AT&T Bell Laboratories: AT&T Bell Laboratories Murray Hill, NJ)
[25]Gill, P. E.; Murray, W.; Picken, S. M.; Wright, M. H., The design and structure of a Fortran program library for optimization, ACM Trans. Math. Softw., 5, 259-283 (1979) ·Zbl 0411.68029
[26]Gill, P. E.; Murray, W.; Ponceleón, D. B.; Saunders, M. A., Preconditioners for indefinite systems arising in optimization, SIAM J. Matrix Anal. Appl., 13, 292-311 (1992) ·Zbl 0749.65037
[27]Gohberg, I.; Lancaster, P.; Rodman, L., Matrices and Indefinite Scalar Products (1983), Birkhäuser: Birkhäuser Basel ·Zbl 0513.15006
[28]Gunzburger, M. D., Finite Element Methods for Viscous Incompressible Flows (1989), Academic Press: Academic Press San Diego ·Zbl 0697.76031
[29]Krogh, F. T., VODQ/SVDQ/DVDQ—Variable order integrators for the numerical solution of ordinary differential equations, (Subroutine Write-Up, Sec. 314 (1969), Jet Propulsion Lab: Jet Propulsion Lab Pasadena, CA)
[30]Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0576.15001
[31]Huckle, T., Iterative methods for Toeplitz-like matrices, (Manuscript SCCM-94-05 (1994), Scientific Computing and Computational Mathematics Program, Stanford University: Scientific Computing and Computational Mathematics Program, Stanford University Stanford, CA) ·Zbl 0685.15020
[32]Lanczos, C., An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bur. Standards, 45, 255-282 (1950)
[33]Lanczos, C., Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bur. Standards, 49, 33-53 (1952)
[34]Lanczos, C., Applied Analysis (1956), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ ·Zbl 0111.12403
[35]Laub, A. J., A Schur method for solving algebraic Riccati equations, IEEE Trans. Automat. Control, 24, 913-921 (1979) ·Zbl 0424.65013
[36]Mehrmann, V., The Autonomous Linear Quadratic Control Problem, (Lecture Notes in Control and Information Sciences, 163 (1991), Springer: Springer Berlin) ·Zbl 0746.93001
[37]Paige, C. C.; Saunders, M. A., Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12, 617-629 (1975) ·Zbl 0319.65025
[38]Parlett, B. N.; Chen, H. C., Use of indefinite pencils for computing damped natural modes, Linear Algebra Appl., 140, 53-88 (1990) ·Zbl 0725.65055
[39]Parlett, B. N.; Taylor, D. R.; Liu, Z. A., A look-ahead Lanczos algorithm for unsymmetric matrices, Math. Comp., 44, 105-124 (1985) ·Zbl 0564.65022
[40]Roebuck, P. A.; Barnett, S., A survey of Toeplitz and related matrices, Internat. J. Systems Sci., 9, 921-934 (1978) ·Zbl 0385.15010
[41]Silvester, D. J.; Kechkar, K., Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem, Comput. Methods Appl. Mech. Engrg., 79, 71-86 (1990) ·Zbl 0706.76075
[42]Taylor, D. R., Analysis of the look ahead Lanczos algorithm, (Ph.D. thesis (1982), University of California: University of California Berkeley, CA) ·Zbl 0564.65021
[43]Tismenetsky, M., A decomposition of Toeplitz matrices and optimal circulant preconditioning, Linear Algebra Appl., 154/155/156, 105-121 (1991) ·Zbl 0734.65039
[44]Zhou, L.; Walker, H. F., Residual smoothing techniques for iterative methods, SIAM J. Sci. Comput., 15, 297-312 (1994) ·Zbl 0802.65041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp