Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Degree theory of BMO. I: Compact manifolds without boundaries.(English)Zbl 0852.58010

The authors consider the degree theory for mappings \(u\) from a compact smooth manifold \(X\) to a connected compact smooth manifold \(Y\) of the same dimension. The notion of degree can be extended to continuous maps from \(X\) to \(Y\) because if \(u,v \in C^1 (X,Y)\) are close in the \(C^0\) topology then they have the same degree. For a \(C^1\)-map there is an integral formula for the degree. The integral formulas suggest the possibility of extending degree theory to another class of maps which need not be continuous namely maps in appropriate Sobolev spaces. This was done by several authors and the list of references is given in the paper. Among them, L. Boutet de Monvel and O. Gabber introduced a degree for maps \(u \in H^{1/2} (S^1, S^1)\) and made an observation that this notion makes sense for maps in the class VMO (vanishing mean oscillation): the closure of the set of smooth maps in the BMO (bounded mean oscillation) topology. Namely, if \(u \in \text{VMO} (S^1, S^1)\) and \(\overline u_\varepsilon (\theta) = {1 \over 2 \varepsilon} \int^{\theta + \varepsilon}_{\theta - \varepsilon} u(s) ds\) then \(|\overline u_\varepsilon (\theta) |\to 1\) uniformly in \(\theta\), in spite of the fact that \(u\) need not be continuous. Then, for \(\varepsilon\) small, \[u_\varepsilon (\theta) = {\overline u_\varepsilon (\theta) \over \bigl |\overline u_\varepsilon (\theta) \bigr |}\] has a well defined degree which is independent of \(\varepsilon\). In the paper under review, the authors develop this concept for maps between \(n\)-dimensional manifolds \(X,Y\) and establish its basic properties. The degree is defined via approximation, in the BMO topology. The content of the paper is as follows:
In Section I.1 they recall the notion of BMO and VMO maps on Euclidean spaces and describe its extension to maps between manifolds. The next section takes up various examples of BMO and VMO maps. The degree for VMO maps is defined in Section I.3 and its standard properties are described in the next section. In Section I.5 the authors consider a natural question concerning maps from \(X\) to \(Y\) not necessarily of the same dimension. The last section deals with the question of the possibility of lifting a map \(u \in \text{BMO} (X, S^1)\) to \(\text{BMO} (X, \mathbb{R})\). The proofs of many technical statements are given in Appendix A. The proofs of results of Section I.6 are technical and use the John-Nirenberg inequality, various forms of which are presented in Appendix B. The authors announce that Part II of this paper will consider the degree theory for VMO maps on manifolds with boundary.
Reviewer: W.Mozgawa (Lublin)

MSC:

58C35 Integration on manifolds; measures on manifolds
58C25 Differentiable maps on manifolds
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
58D15 Manifolds of mappings

Cite

References:

[1]R.A. Adams.Sobolev spaces. Academic Press, 1975. ·Zbl 0314.46030
[2]Bethuel, F., The approximation problem for Sobolev maps between two manifolds, Acta Math., 167, 153-206, 1991; Bethuel, F., The approximation problem for Sobolev maps between two manifolds, Acta Math., 167, 153-206, 1991 ·Zbl 0756.46017 ·doi:10.1007/BF02392449
[3]Bethuel, F., Approximation in trace spaces defined between manifolds, Nonlinear Analysis, T.M.A., 24, 121-130, 1995; Bethuel, F., Approximation in trace spaces defined between manifolds, Nonlinear Analysis, T.M.A., 24, 121-130, 1995 ·Zbl 0824.58011 ·doi:10.1016/0362-546X(93)E0025-X
[4]F. Bethuel, H. Brezis and F. Hélein.Ginzburg-Landau Vortices. Birkhäuser, 1994. ·Zbl 0802.35142
[5]Bethuel, F.; Zheng, X., Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., 80, 60-75, 1988; Bethuel, F.; Zheng, X., Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., 80, 60-75, 1988 ·Zbl 0657.46027 ·doi:10.1016/0022-1236(88)90065-1
[6]Boutet de Monvel-Berthier, A.; Georgescu, V.; Purice, R., A boundary value problem related to the Ginzburg-Landau model, Comm. Math. Phys., 142, 1-23, 1991; Boutet de Monvel-Berthier, A.; Georgescu, V.; Purice, R., A boundary value problem related to the Ginzburg-Landau model, Comm. Math. Phys., 142, 1-23, 1991 ·Zbl 0742.35045 ·doi:10.1007/BF02099170
[7]Brezis, H., Lectures on the Ginzburg-Landau Vortices, 1995, Pisa: Scuola Normale Superiore, Pisa; Brezis, H., Lectures on the Ginzburg-Landau Vortices, 1995, Pisa: Scuola Normale Superiore, Pisa
[8]H. Brezis.Large harmonic maps in two dimensions in Nonlinear Variational Problems, A. Marino et al. ed., Pitman, 1985.
[9]Brezis, H.; Coron, J. M., Large solutions for harmonic maps in two dimensions, Comm. Math. Phys., 92, 203-215, 1983; Brezis, H.; Coron, J. M., Large solutions for harmonic maps in two dimensions, Comm. Math. Phys., 92, 203-215, 1983 ·Zbl 0532.58006 ·doi:10.1007/BF01210846
[10]Coifman, R. R.; Meyer, Y., Une généralisation du théorème de Calderón sur l’intégrale de Cauchy in Fourier Analysis, Proc. Sem. at El Escorial, 88-116, 1980, Madrid: Asoc. Mat. Española, Madrid; Coifman, R. R.; Meyer, Y., Une généralisation du théorème de Calderón sur l’intégrale de Cauchy in Fourier Analysis, Proc. Sem. at El Escorial, 88-116, 1980, Madrid: Asoc. Mat. Española, Madrid
[11]De Kleine, H. A.; Girolo, J. E., A degree theory for almost continuous maps, Fund. Math., 101, 39-52, 1978; De Kleine, H. A.; Girolo, J. E., A degree theory for almost continuous maps, Fund. Math., 101, 39-52, 1978 ·Zbl 0404.54008 ·doi:10.4064/fm-101-1-39-52
[12]Demengel, F., Une Caractérisation des applications de W^1,p (B^N, S^1) qui peuvent être approchées par des fonctions régulières, C.R.A.S., 30, 553-557, 1990; Demengel, F., Une Caractérisation des applications de W^1,p (B^N, S^1) qui peuvent être approchées par des fonctions régulières, C.R.A.S., 30, 553-557, 1990 ·Zbl 0693.46042
[13]M. P. do Carmo.Riemannian geometry. Birkhäuser, 1992. ·Zbl 0752.53001
[14]R. G. Douglas.Banach Algebra Techniques in Operator Theory. Acad. Press, 1972. ·Zbl 0247.47001
[15]Esteban, M. J.; Müller, S., Sobolev maps with integer degree and applications to Skyrme’s problem, Proc. Roy. Soc. London, 436 A, 197-201, 1992; Esteban, M. J.; Müller, S., Sobolev maps with integer degree and applications to Skyrme’s problem, Proc. Roy. Soc. London, 436 A, 197-201, 1992 ·Zbl 0757.49010
[16]Giaquinta, M.; Modica, G.; Soucek, J., Remarks on the degree theory, J. Funct. Anal., 125, 172-200, 1994; Giaquinta, M.; Modica, G.; Soucek, J., Remarks on the degree theory, J. Funct. Anal., 125, 172-200, 1994 ·Zbl 0822.55003 ·doi:10.1006/jfan.1994.1121
[17]Hamilton, O. H., Fixed points for certain noncontinuous transformations, Proc. Amer. Math. Soc., 8, 750-756, 1957; Hamilton, O. H., Fixed points for certain noncontinuous transformations, Proc. Amer. Math. Soc., 8, 750-756, 1957 ·Zbl 0086.37101 ·doi:10.1090/S0002-9939-1957-0087095-7
[18]John, F.; Nirenberg, L., On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14, 415-426, 1961; John, F.; Nirenberg, L., On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14, 415-426, 1961 ·Zbl 0102.04302 ·doi:10.1002/cpa.3160140317
[19]Nash, J., Generalized Brouwer theorem, Research Problems, Bull. Amer. Math. Soc., 62, 76, 1956; Nash, J., Generalized Brouwer theorem, Research Problems, Bull. Amer. Math. Soc., 62, 76, 1956
[20]L. Nirenberg.Topics in Nonlinear Functional Analysis. Courant Institute Lecture Notes, 1974. ·Zbl 0286.47037
[21]Reimann, H. M., Functions of bounded mean oscillation and quasi-conformal mappings, Comm. Math. Helv., 49, 260-276, 1974; Reimann, H. M., Functions of bounded mean oscillation and quasi-conformal mappings, Comm. Math. Helv., 49, 260-276, 1974 ·Zbl 0289.30027 ·doi:10.1007/BF02566734
[22]Sarason, D., Functions of vanishing mean oscillation, Trans. Amer. Math. Soc., 207, 391-405, 1975; Sarason, D., Functions of vanishing mean oscillation, Trans. Amer. Math. Soc., 207, 391-405, 1975 ·Zbl 0319.42006 ·doi:10.1090/S0002-9947-1975-0377518-3
[23]Schoen, R.; Uhlenbeck, K., Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom., 18, 253-268, 1983; Schoen, R.; Uhlenbeck, K., Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom., 18, 253-268, 1983 ·Zbl 0547.58020
[24]Stallings, J., Fixed point theorems for connectivity maps, Fund. Math., 47, 249-263, 1959; Stallings, J., Fixed point theorems for connectivity maps, Fund. Math., 47, 249-263, 1959 ·Zbl 0114.39102 ·doi:10.4064/fm-47-3-249-263
[25]Stegenga, D., Bounded Toeplitz operators on H^1 and applications of the duality between H^1 and the functions of bounded mean oscillations, Amer. J. Math., 98, 573-589, 1976; Stegenga, D., Bounded Toeplitz operators on H^1 and applications of the duality between H^1 and the functions of bounded mean oscillations, Amer. J. Math., 98, 573-589, 1976 ·Zbl 0335.47018 ·doi:10.2307/2373807
[26]E. Stein.Harmonic Analysis. Princeton University Press, 1993. ·Zbl 0821.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp