[1] | R.A. Adams.Sobolev spaces. Academic Press, 1975. ·Zbl 0314.46030 |
[2] | Bethuel, F., The approximation problem for Sobolev maps between two manifolds, Acta Math., 167, 153-206, 1991; Bethuel, F., The approximation problem for Sobolev maps between two manifolds, Acta Math., 167, 153-206, 1991 ·Zbl 0756.46017 ·doi:10.1007/BF02392449 |
[3] | Bethuel, F., Approximation in trace spaces defined between manifolds, Nonlinear Analysis, T.M.A., 24, 121-130, 1995; Bethuel, F., Approximation in trace spaces defined between manifolds, Nonlinear Analysis, T.M.A., 24, 121-130, 1995 ·Zbl 0824.58011 ·doi:10.1016/0362-546X(93)E0025-X |
[4] | F. Bethuel, H. Brezis and F. Hélein.Ginzburg-Landau Vortices. Birkhäuser, 1994. ·Zbl 0802.35142 |
[5] | Bethuel, F.; Zheng, X., Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., 80, 60-75, 1988; Bethuel, F.; Zheng, X., Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., 80, 60-75, 1988 ·Zbl 0657.46027 ·doi:10.1016/0022-1236(88)90065-1 |
[6] | Boutet de Monvel-Berthier, A.; Georgescu, V.; Purice, R., A boundary value problem related to the Ginzburg-Landau model, Comm. Math. Phys., 142, 1-23, 1991; Boutet de Monvel-Berthier, A.; Georgescu, V.; Purice, R., A boundary value problem related to the Ginzburg-Landau model, Comm. Math. Phys., 142, 1-23, 1991 ·Zbl 0742.35045 ·doi:10.1007/BF02099170 |
[7] | Brezis, H., Lectures on the Ginzburg-Landau Vortices, 1995, Pisa: Scuola Normale Superiore, Pisa; Brezis, H., Lectures on the Ginzburg-Landau Vortices, 1995, Pisa: Scuola Normale Superiore, Pisa |
[8] | H. Brezis.Large harmonic maps in two dimensions in Nonlinear Variational Problems, A. Marino et al. ed., Pitman, 1985. |
[9] | Brezis, H.; Coron, J. M., Large solutions for harmonic maps in two dimensions, Comm. Math. Phys., 92, 203-215, 1983; Brezis, H.; Coron, J. M., Large solutions for harmonic maps in two dimensions, Comm. Math. Phys., 92, 203-215, 1983 ·Zbl 0532.58006 ·doi:10.1007/BF01210846 |
[10] | Coifman, R. R.; Meyer, Y., Une généralisation du théorème de Calderón sur l’intégrale de Cauchy in Fourier Analysis, Proc. Sem. at El Escorial, 88-116, 1980, Madrid: Asoc. Mat. Española, Madrid; Coifman, R. R.; Meyer, Y., Une généralisation du théorème de Calderón sur l’intégrale de Cauchy in Fourier Analysis, Proc. Sem. at El Escorial, 88-116, 1980, Madrid: Asoc. Mat. Española, Madrid |
[11] | De Kleine, H. A.; Girolo, J. E., A degree theory for almost continuous maps, Fund. Math., 101, 39-52, 1978; De Kleine, H. A.; Girolo, J. E., A degree theory for almost continuous maps, Fund. Math., 101, 39-52, 1978 ·Zbl 0404.54008 ·doi:10.4064/fm-101-1-39-52 |
[12] | Demengel, F., Une Caractérisation des applications de W^1,p (B^N, S^1) qui peuvent être approchées par des fonctions régulières, C.R.A.S., 30, 553-557, 1990; Demengel, F., Une Caractérisation des applications de W^1,p (B^N, S^1) qui peuvent être approchées par des fonctions régulières, C.R.A.S., 30, 553-557, 1990 ·Zbl 0693.46042 |
[13] | M. P. do Carmo.Riemannian geometry. Birkhäuser, 1992. ·Zbl 0752.53001 |
[14] | R. G. Douglas.Banach Algebra Techniques in Operator Theory. Acad. Press, 1972. ·Zbl 0247.47001 |
[15] | Esteban, M. J.; Müller, S., Sobolev maps with integer degree and applications to Skyrme’s problem, Proc. Roy. Soc. London, 436 A, 197-201, 1992; Esteban, M. J.; Müller, S., Sobolev maps with integer degree and applications to Skyrme’s problem, Proc. Roy. Soc. London, 436 A, 197-201, 1992 ·Zbl 0757.49010 |
[16] | Giaquinta, M.; Modica, G.; Soucek, J., Remarks on the degree theory, J. Funct. Anal., 125, 172-200, 1994; Giaquinta, M.; Modica, G.; Soucek, J., Remarks on the degree theory, J. Funct. Anal., 125, 172-200, 1994 ·Zbl 0822.55003 ·doi:10.1006/jfan.1994.1121 |
[17] | Hamilton, O. H., Fixed points for certain noncontinuous transformations, Proc. Amer. Math. Soc., 8, 750-756, 1957; Hamilton, O. H., Fixed points for certain noncontinuous transformations, Proc. Amer. Math. Soc., 8, 750-756, 1957 ·Zbl 0086.37101 ·doi:10.1090/S0002-9939-1957-0087095-7 |
[18] | John, F.; Nirenberg, L., On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14, 415-426, 1961; John, F.; Nirenberg, L., On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14, 415-426, 1961 ·Zbl 0102.04302 ·doi:10.1002/cpa.3160140317 |
[19] | Nash, J., Generalized Brouwer theorem, Research Problems, Bull. Amer. Math. Soc., 62, 76, 1956; Nash, J., Generalized Brouwer theorem, Research Problems, Bull. Amer. Math. Soc., 62, 76, 1956 |
[20] | L. Nirenberg.Topics in Nonlinear Functional Analysis. Courant Institute Lecture Notes, 1974. ·Zbl 0286.47037 |
[21] | Reimann, H. M., Functions of bounded mean oscillation and quasi-conformal mappings, Comm. Math. Helv., 49, 260-276, 1974; Reimann, H. M., Functions of bounded mean oscillation and quasi-conformal mappings, Comm. Math. Helv., 49, 260-276, 1974 ·Zbl 0289.30027 ·doi:10.1007/BF02566734 |
[22] | Sarason, D., Functions of vanishing mean oscillation, Trans. Amer. Math. Soc., 207, 391-405, 1975; Sarason, D., Functions of vanishing mean oscillation, Trans. Amer. Math. Soc., 207, 391-405, 1975 ·Zbl 0319.42006 ·doi:10.1090/S0002-9947-1975-0377518-3 |
[23] | Schoen, R.; Uhlenbeck, K., Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom., 18, 253-268, 1983; Schoen, R.; Uhlenbeck, K., Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom., 18, 253-268, 1983 ·Zbl 0547.58020 |
[24] | Stallings, J., Fixed point theorems for connectivity maps, Fund. Math., 47, 249-263, 1959; Stallings, J., Fixed point theorems for connectivity maps, Fund. Math., 47, 249-263, 1959 ·Zbl 0114.39102 ·doi:10.4064/fm-47-3-249-263 |
[25] | Stegenga, D., Bounded Toeplitz operators on H^1 and applications of the duality between H^1 and the functions of bounded mean oscillations, Amer. J. Math., 98, 573-589, 1976; Stegenga, D., Bounded Toeplitz operators on H^1 and applications of the duality between H^1 and the functions of bounded mean oscillations, Amer. J. Math., 98, 573-589, 1976 ·Zbl 0335.47018 ·doi:10.2307/2373807 |
[26] | E. Stein.Harmonic Analysis. Princeton University Press, 1993. ·Zbl 0821.42001 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.