Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The Euler-Poincaré equations and double bracket dissipation.(English)Zbl 0846.58048

Summary: This paper studies the perturbation of a Lie-Poisson (or, equivalently an Euler-Poincaré) system by a special dissipation term that has Brockett’s double bracket form. We show that a formally unstable equilibrium of the unperturbed system becomes a spectrally and hence nonlinearly unstable equilibrium after the perturbation is added. We also investigate the geometry of this dissipation mechanism and its relation to Rayleigh dissipation functions. This work complements our earlier work [the authors, ‘Asymptotic stability, mistability, and stabilization of relative equilibria’, Proc. ACC, Boston IEEE, 1120-1125 (1991) and Ann. Inst. Henri Poincaré, Anal. Nonlineaire 11, No. 1, 37-90 (1994;Zbl 0834.58025)] in which we studied the corresponding problem for systems with symmetry with the dissipation added to the internal variables; here it is added directly to the group or Lie algebra variables. The mechanisms discussed here include a number of interesting examples of physical interest such as the Landau-Lifschitz equations for ferromagnetism, certain models for dissipative rigid body dynamics and geophysical fluids, and certain relative equilibria in plasma physics and stellar dynamics.

MSC:

37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
37N99 Applications of dynamical systems
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems

Citations:

Zbl 0834.58025

Cite

References:

[1]Abarbanel, H.D.I., Holm, D.D., Marsden, J.E., Ratiu, T.S., [1986]: Nonlinear stability analysis of stratified fluid equilibria. Phil. Trans. R. Soc. Lond. A318, 349–409; also Phys. Rev. Lett.52, 2352–2355 [1984] ·Zbl 0637.76119 ·doi:10.1098/rsta.1986.0078
[2]Abraham, R., Marsden, J.E. [1978]: Foundations of Mechanics (2nd ed.) Reading, MA: Addison-Wesley ·Zbl 0393.70001
[3]Alekseevski, D.V., Michor, P.W. [1993]: Characteristic classes and Cartan connections. Preprint
[4]Arnold, V. [1988]: Dynamical Systems III. Encyclopedia of Mathematics, Berlin, Heidelberg, New York: Springer
[5]Bloch, A.M., Brockett, R.W., Ratiu, T.S. [1992]: Completely integrable gradient flows. Commun. Math. Phys.147, 57–74 ·Zbl 0766.58027 ·doi:10.1007/BF02099528
[6]Bloch, A.M., Crouch, P.E. [1994]: Reduction of Euler Lagrange problems for constrained variational problems and relation with optimal control problems. Proc. CDC33, 2584–2590, IEEE
[7]Bloch, A.M., Flaschka, H., Ratiu, T.S. [1990]: A convexity theorem for isospectral sets of Jacobi matrices in a compact Lie algebra. Duke Math. J.61, 41–66 ·Zbl 0715.58004 ·doi:10.1215/S0012-7094-90-06103-4
[8]Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Ratiu, T.S. [1991]: Asymptotic stability, instability, and stabilization of relative equilibria. Proc. of ACC., Boston IEEE, 1120–1125
[9]Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Ratiu, T.S. [1994]: Dissipation Induced Instabilities. Ann. Inst. H. Poincaré, Analyse Nonlineare11, 37–90 ·Zbl 0834.58025
[10]Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Sánchez de Alvarez, G. [1992]: Stabilization of rigid body dynamics by internal and external torques. Automatica28, 745–756 ·Zbl 0781.70020 ·doi:10.1016/0005-1098(92)90034-D
[11]Brockett, R.W. [1973]: Lie theory and control systems defined on spheres. SIAM. J. Appl. Math.23, 213–225 ·Zbl 0272.93003 ·doi:10.1137/0125025
[12]Brockett, R.W. [1988]: Dynamical systems that sort lists and solve linear programming problems. Proc. IEEE27, 799–803 and Linear Algebra and its Appl.146, (1991), 79–91 ·Zbl 0719.90045
[13]Brockett, R.W. [1993]: Differential geometry and the design of gradient algorithms. Proc. Symp. Pure Math., AMS54, Part I, 69–92 ·Zbl 1107.37306
[14]Brockett, R.W. [1994]: The double bracket equation as a solution of a variational problem. Fields Institute Comm.3, 69–76, AMS ·Zbl 0818.34001
[15]Chandrasekhar, K. [1977]: Ellipsoidal Figures of Equilibrium. Dover ·Zbl 0213.52304
[16]Chern, S.J., Marsden, J.E. [1990]: A note on symmetry and stability for fluid flows. Geo. Astro. Fluid. Dyn.51, 1–4 ·doi:10.1080/03091929008219847
[17]Chetaev, N.G. [1961]: The stability of Motion. Trans. by. M. Nadler, New York: Pergamon Press ·Zbl 0061.42004
[18]Crouch, P.E. [1981]: Geometric structures in systems theory. IEEE Proc, Part D, No 5128
[19]Ebin, D.G., Marsden, J.E. [1970]: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math.92, 102–163 ·Zbl 0211.57401 ·doi:10.2307/1970699
[20]Giles, R., Patterson, G., Bagneres, A., Kotiuga, R., Humphrey, F., Mansuripur, M. [1991]: Micromagnetic simulations on the connection machine. Very Large Scale Computation in the 21st Century, J.P. Mesirov, ed., SIAM, 33–40
[21]Grmela, M. [1993a]: Weakly nonlocal hydrodynamics. Phys. Rev. E47, 351–365 ·doi:10.1103/PhysRevE.47.351
[22]Grmela, M. [1984]: Bracket formulation of dissipative fluid mechanics equations. Phys. Lett. A102, 355–358 ·doi:10.1016/0375-9601(84)90297-4
[23]Grmela, M. [1993b]: Thermodynamics of driven systems. Phys. Rev. E48, 919–930 ·doi:10.1103/PhysRevE.48.919
[24]Guckenheimer, J., Mahalov, A. [1992]: Instability induced by symmetry reduction. Phys. Rev. Lett.68, 2257–2260 ·Zbl 1050.37516 ·doi:10.1103/PhysRevLett.68.2257
[25]Hahn, W. [1967]: Stability of Motion. Springer, Berlin, New York: Heidelberg
[26]Haller, G. [1992]: Gyroscopic stability and its loss in systems with two essential coordinates. Int. J. Nonlinear Mech.27, 113–127 ·Zbl 0761.70007 ·doi:10.1016/0020-7462(92)90027-5
[27]Helman, J.S., Braun, H.B., Broz, J.S., Baltensperger, W. [1991]: General solution to the Landau-Lifschitz-Gilbert equations linearized around a Bloch wall. Phys. Rev. B43, 5908–5914 ·doi:10.1103/PhysRevB.43.5908
[28]Holm, D.D., Marsden, J.E., Ratiu, T.S., Weinstein, A. [1985]: Nonlinear stability of fluid and plasma equilibria. Phys. Rep.123, 1–116 ·Zbl 0717.76051 ·doi:10.1016/0370-1573(85)90028-6
[29]Kammer, D.C., Gray, G.L. [1993]: A nonlinear control design for energy sink simulation in the Euler-Poinsot problem. J. Astron. Sci.41, 53–72
[30]Kandrup, H.E. [1991]: The secular instability of axisymmetric collisionless star cluster. Astrophy. J.380, 511–514 ·doi:10.1086/170608
[31]Kandrup, H.E., Morrison, P. [1992]: Hamiltonian structure of the Vlasov-Einstein system and the problem of stability for spherical relativistic star clusters. Preprint. ·Zbl 0767.35099
[32]Kaufman, A.N. [1984]: Dissipative Hamiltonian systems: A unifying principle. Physics Letters A100, 419–422 ·doi:10.1016/0375-9601(84)90634-0
[33]Kaufman, A.N. [1985]: Lorentz-covariant dissipative Lagrangian systems. Physics Letters A109, 87–89 ·doi:10.1016/0375-9601(85)90261-0
[34]Kolář, I., Michor, P.W., Slovák, J. [1993]: Natural Operations in Differential Geometry. Berlin, Heidelberg, New York: Springer ·Zbl 0782.53013
[35]Knobloch, E., Mahalov, Marsden, J.E. [1994], Normal forms for three-dimensional parametric instabilities in ideal hydrodynamics. Physica D73, 49–81 ·Zbl 0814.76048 ·doi:10.1016/0167-2789(94)90225-9
[36]Krein, M.G. [1950]: A generalization of some investigations of linear differential equations with periodic coefficients. Doklady Akad. Nauk SSSR N.S.73, 445–448
[37]Krishnaprasad, P.S. [1985]: Lie-Poisson structures, dual-spin spacecraft and asymptotic stability. Nonl. An. Th. Meth. and Appl.9, 1011–1035 ·Zbl 0626.70028 ·doi:10.1016/0362-546X(85)90083-5
[38]LaSalle, J.P., Lefschetz, S. [1963]: Stability by Lyapunov’s direct method. New York: Academic Press
[39]Lewis, D.K. [1992]: Lagrangian block diagonalization. Dyn. Diff. Eqn’s.4, 1–42 ·Zbl 0747.58030 ·doi:10.1007/BF01048153
[40]Lewis, D., Ratiu, T.S., Simo, J.C., Marsden, J.E. [1992]: The heavy top, a geometric treatment Nonlinearity5, 1–48 ·Zbl 0753.70004 ·doi:10.1088/0951-7715/5/1/001
[41]Lewis, D.K., Simo, J.C. [1990]: Nonlinear stability of rotating pseudo-rigid bodies. Proc. Roy. Soc. Lon. A427, 281–319 ·Zbl 0697.73045 ·doi:10.1098/rspa.1990.0014
[42]MacKay, R. [1991]: Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation. Phys. Lett.A155, 266–268 ·doi:10.1016/0375-9601(91)90480-V
[43]Marsden, J.E. [1992]: Lectures on Mechanics. London Mathematical Society Lecture note series,174, Cambridge: Cambridge University Press
[44]Marsden, J.E., Ratiu, T.S. [1992]: Symmetry and Mechanics. Texts in Applied Mathematics,17, Berlin, Heilderberg, New York: Springer
[45]Marsden, J.E., Ratiu, T.S., Raugel, G. [1991]: Symplectic connections and the linearization of Hamiltonian systems. Proc. Roy. Soc. Ed. A117, 329–380 ·Zbl 0795.58018
[46]Marsden, J.E., Ratiu, T.S., Weinstein, A. [1984]: Semi-direct products and reduction in mechanics. Trans. Am. Math. Soc.281, 147–177 ·Zbl 0529.58011 ·doi:10.1090/S0002-9947-1984-0719663-1
[47]Marsden, J.E., Scheurle, J. [1993a]: Lagrangian reduction and the double spherical pendulum. ZAMP44, 17–43 ·Zbl 0778.70016 ·doi:10.1007/BF00914351
[48]Marsden, J.E., Scheurle, J. [1993b]: The reduced Euler-Lagrange equations. Fields Institute Comm.1, 139–164 ·Zbl 0789.70013
[49]Marsden, J.E., Weinstein, A. [1982]: The Hamiltonian structure of the Maxwell-Vlasov equations. Physica D4, 394–406 ·Zbl 1194.35463 ·doi:10.1016/0167-2789(82)90043-4
[50]Morrison, P.J. [1980]: The Maxwell-Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A80, 383–386 ·doi:10.1016/0375-9601(80)90776-8
[51]Morrison, P.J. [1982]: Poisson Brackets for fluids and plasmas. In: Mathematical Methods in Hydrodynamics and Integrability in Related Dynamical Systems. AIP Conf. Proc.88, M. Tabor and Y.M. Treve (eds.), La Jolla, CA ·Zbl 0588.76004
[52]Morrison, P.J. [1986]: A paradigm for joined Hamiltonian and dissipative systems. Physica D18, 410–419 ·Zbl 0661.70025 ·doi:10.1016/0167-2789(86)90209-5
[53]Morrison, P.J., Kotschenreuther, M. [1989]: The free energy principle, negative energy modes and stability. Proc 4th Int. Workshop on Nonlinear and Turbulent Processes in Physics, Singapore: World Scientific Press. ·Zbl 0757.70010
[54]Newcomb, W.A. [1962]: Lagrangian and Hamiltonian methods in Magnetohydrodynamics. Nuc. Fusion Suppl., part 2, 451–463
[55]O’Dell, T.H. [1981]: Ferromagnetodynamics. New York: John Wiley
[56]O’Reilly, O, Malhotra, N.K., Namamchehivaya, N.S. [1993]: Destabilization of the equilibria of reversible dynamical systems (preprint)
[57]Pego, R.L., Weinstein, M.I. [1992]: Eigenvalues and instabilities of solitary waves. Phil. Trans. Roy. Soc. Lond.340, 47–94 ·Zbl 0776.35065 ·doi:10.1098/rsta.1992.0055
[58]Poincaré, H. [1885]: Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation. Acta. Math.7, 259 ·JFM 17.0864.02 ·doi:10.1007/BF02402204
[59]Poincaré, H. [1892]: Les formes d’équilibre d’une masse fluide en rotation. Revue Générale des Sciences3, 809–815
[60]Poincaré, H. [1901]: Sur la stabilité de l’équilibre des figures piriformes affectées par une masse fluide en rotation. Philosophical Transactions A198, 333–373 ·JFM 33.0740.06 ·doi:10.1098/rsta.1902.0007
[61]Poincaré, H. [1910]: Sur la precession des corps deformables. Bull Astron27, 321–356 ·Zbl 1308.74043
[62]Posbergh, T.A. [1994]: The damped vibration absorber as a feedback control problem. Preprint
[63]Posbergh, T.A., Zhao, R. [1993]: Stabilization of the uniform rotation of a rigid body by the energy-momentum method. Fields Inst. Comm.1, 263–280 ·Zbl 0788.70020
[64]Riemann, B. [1860]: Untersuchungen über die Bewegung eines flüssigen gleichartigen Ellipsoides. Abh. d. Königl. Gesell. der Wiss. zu Göttingen9, 3–36
[65]Routh, E.J. [1877]: Stability of a given state of motion. Reprinted in Stability of Motion, ed. A.T. Fuller, New York: Halsted Press, 1975 ·JFM 17.0315.02
[66]Seliger, R.L., Whitham, G.B. [1968]: Variational principles in continuum mechanics. Proc. Roy. Soc. Lond.305, 1–25 ·Zbl 0198.57601 ·doi:10.1098/rspa.1968.0103
[67]Shepherd, T.G. [1992]: Extremal properties and Hamiltonian structure of the Euler equations. Topological Aspects of the Dynamics of Fluids and Plasmas, Moffatt, H.K., et al., eds., Dordrecht. Kluwer, 275–292 ·Zbl 0789.76018
[68]Simo, J.C., Lewis, D.K., Marsden, J.E. [1991]: Stability of relative equilibria I: The reduced energy momentum method. Arch. Rat. Mech. Anal.115, 15–59 ·Zbl 0738.70010 ·doi:10.1007/BF01881678
[69]Simo, J.C., Posbergh, T.A., Marsden, J.E. [1990]: Stability of coupled rigid body and geometrically exact rods: Block diagonalization and the energy-momentum method. Physics Reports193, 280–360 ·doi:10.1016/0370-1573(90)90125-L
[70]Simo, J.C., Posbergh, T.A., Marsden, J.E. [1991]: Stability of relative equilibria II: Three dimensional elasticity. Arch. Rat. Mech. Anal.115, 61–100 ·Zbl 0738.70011 ·doi:10.1007/BF01881679
[71]Sri Namachchivaya, N., Ariaratnam, S.T. [1985]: On the dynamic stability of gyroscopic systems. SM Archives10, 313–355 ·Zbl 0584.73057
[72]Sternberg, S. [1963]: Lectures on Differential Geometry. New York: Prentice-Hall (Reprinted by Chelsea, 1983). ·Zbl 0116.21304
[73]Taussky, O. [1961]: A Generalization of a Theorem of Lyapunov. SIAM J. Appl. Math9, 640–643 ·Zbl 0108.01202 ·doi:10.1137/0109053
[74]Thomson, L., Tait, P.G. [1879]: Treatise on Natural Philosophy. Cambridge: Cambridge Univ. Press. ·JFM 15.0767.01
[75]Touma, J., Wisdom, J. [1992]: Lie-Poisson integrators for rigid body dynamics in the solar system. Preprint
[76]Turski, L.A., Kaufman, A.N. [1987]: Canonical-dissipative formulation of relativistic plasma kinetic theory with self-consistent Maxwell field. Physics Lett. A120, 331–333 ·doi:10.1016/0375-9601(87)90725-0
[77]Vallis, G.K., Carnevale, G.F., Young, W.R. [1989]: Extremal energy properties and construction of stable solutions of the Euler equations. J. Fluid Mech.207, 133–152 ·Zbl 0681.76007 ·doi:10.1017/S0022112089002533
[78]van Gils, S.A., Krupa, M., Langford, W.F. [1990]: Hopf bifurcation with non-semisimple 1 resonance. Nonlinearity3, 825–830 ·Zbl 0709.58027 ·doi:10.1088/0951-7715/3/3/013
[79]Vershik, A.M., Faddeev, L.D. [1981]: Lagrangian mechanics in invariant form. Sel. Math. Sov.1, 339–350 ·Zbl 0518.58015
[80]Wang, L.S., Krishnaprasad, P.S. [1992]: Gyroscopic control and stabilization. J. Nonlinear Sci.2, 367–415 ·Zbl 0800.93563 ·doi:10.1007/BF01209527
[81]Ziegler, H. [1956]: On the concept of elastic stability. Adv. Appl. Mech.4, 351–403 ·doi:10.1016/S0065-2156(08)70376-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp