[1] | Berezin, F.A.: Introduction to superanalysis. Dordrecht: Reidel, 1987 ·Zbl 0659.58001 |
[2] | Bessis, D.: Padé approximants in Quantum Field Theory. In: Padé approximants and their applications. P.R. Graves-Morris Ed., New York: Academic Press, 1973 |
[3] | Berstel, J., Reutenauer, C.: Rational series and their languages. EATCS Monographs on Theoretical Computer Science, Vol. 12, Berlin-Heidelberg-New York: Springer, 1988 ·Zbl 0668.68005 |
[4] | Bourbaki, N.: Algebra. Chap. I–III, 1973 |
[5] | Capelli, A.: Über die Zurückführung der Cayley’shen Operationen {\(\Omega\)} und gewöhnlishe Polkaroperationen. Math. Ann.29, 331–338 (1887) ·JFM 19.0151.01 ·doi:10.1007/BF01447728 |
[6] | Carré, C., Lascoux, A. and Leclerc, B.: Turbo-straightening for decomposition into standard bases. Int. J. Algebra and Computation2, 275–290 (1992) ·Zbl 0773.20001 ·doi:10.1142/S0218196792000165 |
[7] | Cayley, A.: On certain results related to quaternions. Phil. Mag.26, 141–145 (1845) |
[8] | Cherednik I.V.: A new interpretation of Gelfand-Zetlin bases. Duke Math. J.54, 563–577 (1987) ·Zbl 0645.17006 ·doi:10.1215/S0012-7094-87-05423-8 |
[9] | Cohn, P.M.: Free rings and their relations. New York-London: Academic Press, 1971 ·Zbl 0232.16003 |
[10] | Cohn, P.M.: Skew-field constructions. London Math. Soc. Lecture Notes Series27 (1977) ·Zbl 0355.16009 |
[11] | Cohn, P.M., Reutenauer, C.: A normal form in free fields. Preprint, 1993 ·Zbl 0836.16012 |
[12] | Dieudonné, J.: Les déterminants sur un corps non commutatif. Bull. Soc. Math. France71, 27–45 (1943) ·Zbl 0028.33904 |
[13] | Drinfeld, V.G.: Hopf algebras and the quantum Yang-Baxter equation. Soviet Math. Dokl.32, 254–258 (1985) |
[14] | Drinfeld, V.G.: A new realization of Yangians and quantized affine algebras. Soviet Math. Dokl.36, 212–216 (1988) ·Zbl 0667.16004 |
[15] | Gelfand, I.M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V.S., Thibon, J.-Y.: Noncommutative symmetric functions. Adv. in Math. (to appear) ·Zbl 0831.05063 |
[16] | Gelfand, I.M., Retakh, V.S.: Determinants of matrices over noncommutative rings. Funct. Anal. Appl.25, 91–102 (1991) ·Zbl 0748.15005 ·doi:10.1007/BF01079588 |
[17] | Gelfand, I.M., Retakh, V.S.: A theory of noncommutative determinants and characteristic functions of graphs. Funct. Anal. Appl.26, 1–20 (1992); Publ. LACIM, UQAM, Montreal,14, 1–26 ·Zbl 0828.20025 ·doi:10.1007/BF01077066 |
[18] | Graffi, S., Grecchi, V.: Matrix moments methods in perturbation theory, boson quantum field models, and anharmonic oscillators. Commun. Math. Phys.35, 235–252 (1974) ·Zbl 0324.47010 ·doi:10.1007/BF01646195 |
[19] | Howe, R., Umeda, T.: The Capelli identity, the double commutant theorem, and the multiplicities-free actions. Math. Ann.290, 565–619 (1991) ·Zbl 0733.20019 ·doi:10.1007/BF01459261 |
[20] | Jimbo, M.: Aq-difference analogue ofU(g) and the Yang-Baxter equation. Lett. Math. Phys.10, 63–69 (1985) ·Zbl 0587.17004 ·doi:10.1007/BF00704588 |
[21] | Jimbo, M.: Aq-analogue ofU(gl(N+1)), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys.11, 247–252 (1986) ·Zbl 0602.17005 ·doi:10.1007/BF00400222 |
[22] | Kulish P.P., Sklyanin, E.K.: Quantum spectral transform method: Recent developments. In: ’Integrable quantum field theories’, Lecture Notes in Phys.151, Berlin, Heidelberg, New York: Springer 1982, pp. 61–119 |
[23] | Lakshmibai, V., Reshetikhin, N.Yu.: Quantum deformations ofSL n /B and its Schubert varieties. ”Special Functions”, ICM-90 Statellite Conference Proceedings, Springer |
[24] | Leclerc, B.: On identities satisfied by minors of a matrix. Adv. in Math.100, 101–132 (1993) ·Zbl 0804.05074 ·doi:10.1006/aima.1993.1030 |
[25] | Malcev, A.I.: On the embedding of group algebras in division rings. Doklady Akad. Nauk. SSSR,60, 1499–1501 (1948) ·Zbl 0034.30901 |
[26] | Molev, A.I.: Gelfand-Tsetlin bases for representations of Yangians. Lett. Math. Phys.30, 53–60 (1994) ·Zbl 0787.17014 ·doi:10.1007/BF00761422 |
[27] | Molev, A.I., Nazarov, M. and Olshanski, G.I.: Yangians and classical Lie algebras. Preprint, 1993. |
[28] | Muir, T.: A treatise on the theory of determinants. Dover: Macmillan 1882, 1960 |
[29] | Nazarov, M.: Quantum Berezinian and the classical Capelli identity. Lett. Math. Phys.21, 123–131 (1991) ·Zbl 0722.17004 ·doi:10.1007/BF00401646 |
[30] | Nazarov, M., Tarasov, V.: Yangians and Gelfand-Zetlin bases. Publ. RIMS30, 459–478 (1994) ·Zbl 0929.17009 ·doi:10.2977/prims/1195165907 |
[31] | Neumann, B.H.: On ordered division rings. Trans. A.M.S.66, 202–252 (1959) ·Zbl 0035.30401 ·doi:10.1090/S0002-9947-1949-0032593-5 |
[32] | Noumi, M., Umeda, T., Wakayama, M.: A quantum analogue of the Capelli identity and an elementary differential calculus onGL q (n). Preprint, 1991 ·Zbl 0835.17013 |
[33] | Olshanski, G.I.: Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians. In: ’Topics in representation theory (A.A. KirillovEd.)’, Adv. Soviet Math.2, Providence, RI: AMS, 1991, pp. 1–66 |
[34] | Passman, D.S.: The algebraic structure of group rings. New York: Interscience, 1977 ·Zbl 0368.16003 |
[35] | Reshetikhin, N.Y., Takhtadzhyan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie algebras. Leningrad Math. J.1, 193–225 (1990) ·Zbl 0715.17015 |
[36] | Sato, M., Kashiwara, M.: The determinant of matrices of pseudo-differential operators. Proc. Japan Acad. Sci.51, 17–19 (1975) ·Zbl 0337.35067 ·doi:10.3792/pja/1195518723 |
[37] | Schützenberger, M.P.: On the definition of a family of automata, Inf. and Contr.4, 245–270 (1961) ·Zbl 0104.00702 ·doi:10.1016/S0019-9958(61)80020-X |
[38] | Taft, E., Towber, J.: Quantum deformation of flag schemes and Grassman schemes I-Aq-deformation of the shape-algebra forGL(n). J. of Algebra142, 1–36 (1991) ·Zbl 0739.17007 ·doi:10.1016/0021-8693(91)90214-S |
[39] | Turnbull, H.W.: The theory of determinants, matrices and invariants. New York, London: Dover, 1960 ·Zbl 0103.00702 |
[40] | Weyl, H.: Classical groups, their invariants and representations. Princeton, NJ: Princeton Univ. Press, 1946 ·Zbl 1024.20502 |