Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Introduction to sh Lie algebras for physicists.(English)Zbl 0824.17024

After establishing the notation and conventions (especially for signs), we give the formal definition of sh (strongly homotopy) Lie structure and verify the equivalence with a formulation in terms of a “nilpotent” operator on \(\wedge sV\). Comparison with the physics literature calls attention to some further subtleties of signs. Then we establish the sh analog of the familiar fact that commutators in an associative algebra form a Lie algebra. We next point out the relevance of these structures to \((N+1)\)-point functions in physics. We remark on the distinctions between these structures on the cohomology level and at the underlying form level and conclude with the basic theorem of homological perturbation theory relating higher-order bracket operations on cohomology to strict Lie algebra structures on forms.

MSC:

17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.)

Cite

References:

[1]Barnes, D., and Lambe, L. A. (1991).Proceedings of the American Mathematical Society,112, 881-892. ·doi:10.1090/S0002-9939-1991-1057939-0
[2]Berends, F. A., Burgers, G. J. H., and van Dam, H. (1985).Nuclear Physics B,260, 295-322. ·doi:10.1016/0550-3213(85)90074-4
[3]Burgers, G. J. H. (1985). On the construction of field theories for higher spin massless particles, Doctoral dissertation, Rijksuniversiteit te Leiden.
[4]Chevalley, C., Eilenberg, S. (1948).Transactions of the American Mathematical Society,63, 85-124. ·Zbl 0031.24803 ·doi:10.1090/S0002-9947-1948-0024908-8
[5]Gerstenhaber, M. (1963).Annals of Mathematics,78, 267-288. ·Zbl 0131.27302 ·doi:10.2307/1970343
[6]Gugenheim, V. K. A. M. (1972).Illinois Journal of Mathematics,3, 398-414. ·Zbl 0238.55015
[7]Gugenheim, V. K. A. M. (1982).Journal of Pure and Applied Algebra,25, 197-205. ·Zbl 0487.55003 ·doi:10.1016/0022-4049(82)90036-6
[8]Gugenheim, V. K. A. M., and Lambe, L. (1989).Illinois Journal of Mathematics,33.
[9]Gugenheim, V. K. A. M., and Stasheff, J. (1986).Bulletin Société Mathématique de Belgique,38, 237-246.
[10]Gugenheim, V. K. A. M., Lambe, L., and Stasheff, J. (1990).Illinois Journal of Mathematics,34, 485-502. ·Zbl 0684.55006
[11]Gugenheim, V. K. A. M., Lambe, L., and Stasheff, J. (1991).Illinois Journal of Mathematics,35, 357-373.
[12]Hata, H., Itoh, K., Kugo, T., Kunitomo, H., and Ogawa, K. (1986).Physical Review D,34, 2360-2429. ·doi:10.1103/PhysRevD.34.2360
[13]Hata, H., Itoh, H., Kugo, T., Kunitomo, H., and Ogawa, K. (1987).Physical Review D,35, 1318-1355. ·doi:10.1103/PhysRevD.35.1318
[14]Jones, E. (1990). A study of Lie and associative algebras from a homotopy point of view, Master’s Project, North Carolina State University.
[15]Kadeishvili, T. (1982).Soobsh cheniya Akademiya Nauk Gruzinskoi SSR,108, 249-252.
[16]Kaku, M. (1988a).Physics Letters B,200, 22-30. ·doi:10.1016/0370-2693(88)91102-1
[17]Kaku, M. (1988b). Deriving the four-string interaction from geometric string field theory, preprint, CCNY-HEP-88/5.
[18]Kaku, M. (1988c). Geometric derivation of string field theory from first principles: Closed strings and modular invariance, preprint, CCNY-HEP-88/6.
[19]Kaku, M. (1988d).Introduction to Superstrings, Springer-Verlag, Berlin. ·Zbl 0655.58001
[20]Kontsevich, M. (1992). Graphs, homotopical algebra and low-dimensional topology, preprint. ·Zbl 0756.35081
[21]Kaku, M., and Lykken, J. (1988). Modular invariant closed string field theory, preprint, CCNY-HEP-88/7.
[22]Kugo, T. (1987). String field theory, Lectures delivered at 25th Course of the International School of Subnuclear Physics on ?The Super World II?, Erice, August 6-14, 1987.
[23]Kugo, T., and Suehiro, K. (1990).Nuclear Physics B, 434-466.
[24]Kugo, T., Kunitomo, H., and Suehiro, K. (1989).Physics Letters,226B, 48-54.
[25]Lambe, L. (1992). Homological perturbation theory?Hochschild homology and formal groups, inProceedings Conference on Deformation Theory and Quantization with Applications to Physics, Amherst, June 1990, AMS, Providence, Rhode Island.
[26]Lambe, L., and Stasheff, J. D. (1987).Manuscripta Mathematica,58, 363-376. ·Zbl 0632.55011 ·doi:10.1007/BF01165893
[27]Retakh, V. S. (1977).Functional Analysis and Its Applications,11, 88-89.
[28]Retakh, V. S. (1993). Lie-Massey brackets andn-homotopically multiplicative maps of DG-Lie algebras,Journal of Pure and Applied Algebra, to appear. ·Zbl 0781.17013
[29]Saadi, M. and Zwiebach, B. (1989).Annals of Physics,192, 213-227. ·doi:10.1016/0003-4916(89)90126-7
[30]Samelson, H. (1953).American Journal of Mathematics,75, 744-752. ·Zbl 0051.13904 ·doi:10.2307/2372549
[31]Schlessinger, M., and Stasheff, J. D. (1985).Journal of Pure and Applied Algebra,38, 313-322. ·Zbl 0576.17008 ·doi:10.1016/0022-4049(85)90019-2
[32]Schlessinger, M., Stasheff, J. D. (n.d.) Deformation theory and rational homotopy type, Publications Mathematiques IHES, to appear. ·Zbl 0576.17008
[33]Stasheff, J. D. (1963a).Transactions of the American Mathematical Society,108, 275-292. ·Zbl 0114.39402 ·doi:10.2307/1993608
[34]Stasheff, J. D. (1963b).Transactions of the American Mathematical Society,108, 293-312. ·Zbl 0114.39402
[35]Stasheff, J. D. (1970).H-Spaces From a Homotopy Point of View, Springer-Verlag, Berlin. ·Zbl 0205.27701
[36]Stasheff, J. D. (1988).Bulletin of the American Mathematical Society,1988, 287-290. ·Zbl 0669.18009 ·doi:10.1090/S0273-0979-1988-15645-5
[37]Stasheff, J. (1989). An almost groupoid structure for the space of (open) strings and implications for string field theory,Advances in Homotopy Theory (Cortona, June 1988), LMS Lecture Note Series 139, pp. 165-172. ·Zbl 0825.58055
[38]Stasheff, J. (1992). Drinfel’d’s quasi-Hopf algebras and beyond, inProceedings Conference on Deformation Theory and Quantization with Applications to Physics, Amherst, June 1990, AMS, Providence, Rhode Island.
[39]Whitehead, J. H. C., (1941).Annals of Mathematics,42, 409-428. ·Zbl 0027.26404 ·doi:10.2307/1968907
[40]Wiesbrock, H.-W., (1991).Communications in Mathematical Physics,136, 369-397. ·Zbl 0741.46036 ·doi:10.1007/BF02100031
[41]Wiesbrock, H.-W., (1992a).Journal of Mathematical Physics,33, 1837-1840. ·Zbl 0836.46063 ·doi:10.1063/1.529661
[42]Wiesbrock, H.-W. (1992b).Communications in Mathematical Physics,145, 17-42. ·Zbl 0746.58079 ·doi:10.1007/BF02099279
[43]Witten, E. (1992). Chern-Simons gauge theory as a string theory, preprint IASSNS-HEP-92/45.
[44]Witten, E., and Zwiebach, B. (1992).Nuclear Physics B,377, 55-112. ·doi:10.1016/0550-3213(92)90018-7
[45]Zwiebach, B. (1992). Closed string field theory: Quantum action and the BV master equation, preprint IASSNS-HEP-92/41.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp