[1] | Barnes, D., and Lambe, L. A. (1991).Proceedings of the American Mathematical Society,112, 881-892. ·doi:10.1090/S0002-9939-1991-1057939-0 |
[2] | Berends, F. A., Burgers, G. J. H., and van Dam, H. (1985).Nuclear Physics B,260, 295-322. ·doi:10.1016/0550-3213(85)90074-4 |
[3] | Burgers, G. J. H. (1985). On the construction of field theories for higher spin massless particles, Doctoral dissertation, Rijksuniversiteit te Leiden. |
[4] | Chevalley, C., Eilenberg, S. (1948).Transactions of the American Mathematical Society,63, 85-124. ·Zbl 0031.24803 ·doi:10.1090/S0002-9947-1948-0024908-8 |
[5] | Gerstenhaber, M. (1963).Annals of Mathematics,78, 267-288. ·Zbl 0131.27302 ·doi:10.2307/1970343 |
[6] | Gugenheim, V. K. A. M. (1972).Illinois Journal of Mathematics,3, 398-414. ·Zbl 0238.55015 |
[7] | Gugenheim, V. K. A. M. (1982).Journal of Pure and Applied Algebra,25, 197-205. ·Zbl 0487.55003 ·doi:10.1016/0022-4049(82)90036-6 |
[8] | Gugenheim, V. K. A. M., and Lambe, L. (1989).Illinois Journal of Mathematics,33. |
[9] | Gugenheim, V. K. A. M., and Stasheff, J. (1986).Bulletin Société Mathématique de Belgique,38, 237-246. |
[10] | Gugenheim, V. K. A. M., Lambe, L., and Stasheff, J. (1990).Illinois Journal of Mathematics,34, 485-502. ·Zbl 0684.55006 |
[11] | Gugenheim, V. K. A. M., Lambe, L., and Stasheff, J. (1991).Illinois Journal of Mathematics,35, 357-373. |
[12] | Hata, H., Itoh, K., Kugo, T., Kunitomo, H., and Ogawa, K. (1986).Physical Review D,34, 2360-2429. ·doi:10.1103/PhysRevD.34.2360 |
[13] | Hata, H., Itoh, H., Kugo, T., Kunitomo, H., and Ogawa, K. (1987).Physical Review D,35, 1318-1355. ·doi:10.1103/PhysRevD.35.1318 |
[14] | Jones, E. (1990). A study of Lie and associative algebras from a homotopy point of view, Master’s Project, North Carolina State University. |
[15] | Kadeishvili, T. (1982).Soobsh cheniya Akademiya Nauk Gruzinskoi SSR,108, 249-252. |
[16] | Kaku, M. (1988a).Physics Letters B,200, 22-30. ·doi:10.1016/0370-2693(88)91102-1 |
[17] | Kaku, M. (1988b). Deriving the four-string interaction from geometric string field theory, preprint, CCNY-HEP-88/5. |
[18] | Kaku, M. (1988c). Geometric derivation of string field theory from first principles: Closed strings and modular invariance, preprint, CCNY-HEP-88/6. |
[19] | Kaku, M. (1988d).Introduction to Superstrings, Springer-Verlag, Berlin. ·Zbl 0655.58001 |
[20] | Kontsevich, M. (1992). Graphs, homotopical algebra and low-dimensional topology, preprint. ·Zbl 0756.35081 |
[21] | Kaku, M., and Lykken, J. (1988). Modular invariant closed string field theory, preprint, CCNY-HEP-88/7. |
[22] | Kugo, T. (1987). String field theory, Lectures delivered at 25th Course of the International School of Subnuclear Physics on ?The Super World II?, Erice, August 6-14, 1987. |
[23] | Kugo, T., and Suehiro, K. (1990).Nuclear Physics B, 434-466. |
[24] | Kugo, T., Kunitomo, H., and Suehiro, K. (1989).Physics Letters,226B, 48-54. |
[25] | Lambe, L. (1992). Homological perturbation theory?Hochschild homology and formal groups, inProceedings Conference on Deformation Theory and Quantization with Applications to Physics, Amherst, June 1990, AMS, Providence, Rhode Island. |
[26] | Lambe, L., and Stasheff, J. D. (1987).Manuscripta Mathematica,58, 363-376. ·Zbl 0632.55011 ·doi:10.1007/BF01165893 |
[27] | Retakh, V. S. (1977).Functional Analysis and Its Applications,11, 88-89. |
[28] | Retakh, V. S. (1993). Lie-Massey brackets andn-homotopically multiplicative maps of DG-Lie algebras,Journal of Pure and Applied Algebra, to appear. ·Zbl 0781.17013 |
[29] | Saadi, M. and Zwiebach, B. (1989).Annals of Physics,192, 213-227. ·doi:10.1016/0003-4916(89)90126-7 |
[30] | Samelson, H. (1953).American Journal of Mathematics,75, 744-752. ·Zbl 0051.13904 ·doi:10.2307/2372549 |
[31] | Schlessinger, M., and Stasheff, J. D. (1985).Journal of Pure and Applied Algebra,38, 313-322. ·Zbl 0576.17008 ·doi:10.1016/0022-4049(85)90019-2 |
[32] | Schlessinger, M., Stasheff, J. D. (n.d.) Deformation theory and rational homotopy type, Publications Mathematiques IHES, to appear. ·Zbl 0576.17008 |
[33] | Stasheff, J. D. (1963a).Transactions of the American Mathematical Society,108, 275-292. ·Zbl 0114.39402 ·doi:10.2307/1993608 |
[34] | Stasheff, J. D. (1963b).Transactions of the American Mathematical Society,108, 293-312. ·Zbl 0114.39402 |
[35] | Stasheff, J. D. (1970).H-Spaces From a Homotopy Point of View, Springer-Verlag, Berlin. ·Zbl 0205.27701 |
[36] | Stasheff, J. D. (1988).Bulletin of the American Mathematical Society,1988, 287-290. ·Zbl 0669.18009 ·doi:10.1090/S0273-0979-1988-15645-5 |
[37] | Stasheff, J. (1989). An almost groupoid structure for the space of (open) strings and implications for string field theory,Advances in Homotopy Theory (Cortona, June 1988), LMS Lecture Note Series 139, pp. 165-172. ·Zbl 0825.58055 |
[38] | Stasheff, J. (1992). Drinfel’d’s quasi-Hopf algebras and beyond, inProceedings Conference on Deformation Theory and Quantization with Applications to Physics, Amherst, June 1990, AMS, Providence, Rhode Island. |
[39] | Whitehead, J. H. C., (1941).Annals of Mathematics,42, 409-428. ·Zbl 0027.26404 ·doi:10.2307/1968907 |
[40] | Wiesbrock, H.-W., (1991).Communications in Mathematical Physics,136, 369-397. ·Zbl 0741.46036 ·doi:10.1007/BF02100031 |
[41] | Wiesbrock, H.-W., (1992a).Journal of Mathematical Physics,33, 1837-1840. ·Zbl 0836.46063 ·doi:10.1063/1.529661 |
[42] | Wiesbrock, H.-W. (1992b).Communications in Mathematical Physics,145, 17-42. ·Zbl 0746.58079 ·doi:10.1007/BF02099279 |
[43] | Witten, E. (1992). Chern-Simons gauge theory as a string theory, preprint IASSNS-HEP-92/45. |
[44] | Witten, E., and Zwiebach, B. (1992).Nuclear Physics B,377, 55-112. ·doi:10.1016/0550-3213(92)90018-7 |
[45] | Zwiebach, B. (1992). Closed string field theory: Quantum action and the BV master equation, preprint IASSNS-HEP-92/41. |