Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Linear matrix inequalities in system and control theory.(English)Zbl 0816.93004

SIAM Studies in Applied Mathematics. 15. Philadelphia, PA: SIAM, Society for Industrial and Applied Mathematics. xii, 193 p. (1994).
This is an excellent, concisely written research monograph which allows to consider a large variety of results on linear matrix inequalities in system and control theory (starting with the famous Lyapunov matrix inequality more than 100 years ago and including results connected with the names of Lur’e and Postnikov in the 1940’s, Kalman, Yakubovich, Popov in the early 1960’s, Zames, Sandberg, J. C. Willems, etc.) in the framework of a unified computational approach. As the authors state in the preface, “the basic topic of this book is solving problems from system and control theory using convex optimization. We show that a wide variety of problems arising in system and control theory can be reduced to a handful of standard convex and quasiconvex optimization problems that involve matrix inequalities. For a few special cases there are ‘analytical solutions’ to these problems, but our main point is that they can be solved numerically in all cases. These standard problems can be solved in polynomial-time (by, e.g., the ellipsoid algorithm of Shor, Nemitovskij, and Yudin), and so are tractable, at least in a theoretical sense. Recently developed interior-point methods for these standard problems have been found to be extremely efficient in practice. Therefore, we consider the original problems from system and control theory as solved”.
The book consists of ten chapters. Chapter 1 is a short introduction, including a list of problems to be handled, and a brief history. In Chapter 2 the above mentioned standard optimization problems are listed and the means to treat them (ellipsoid algorithm, interior point methods) are indicated. Chapter 3 deals with some matrix problems (minimizing the condition number or the norm by scaling; quadratic approximation of a polytopic norm; ellipsoidal approximation).
Chapter 4 to 7 are devoted to linear differential inclusions (LDIs), i.e. systems of the type \(\dot x= A(t) x+ B_ w(t) w+ B_ u(t)u\), \(z= C_ z(t) x+ D_{zw}(t) w+ D_{zu}(t)u\) with \[\left[\begin{matrix} A(t) & B_ w(t) & B_ u(t)\\ C_ z(t) & D_{zw}(t) & D_{zu}(t)\end{matrix}\right]\in \Omega;\] here \(x\) is the state, \(w\) is an exogenous input signal, \(u\) is the control input and \(z\) is the output, and \(\Omega\) has one of the following three special forms: a single point, a polytope, or the image of a unit ball under a matrix linear-fractional mapping. In Chapter 5 the state properties, in Chapter 6 the input/output properties of LDIs are analyzed, in Chapter 7 the synthesis of state-feedbacks for LDIs is discussed.
Chapter 8 is devoted to Lur’e and multiplier methods, Chapter 9 to systems with multiplicative noise. Chapter 10 deals with ‘miscellaneous problems’: optimization over an affine family of linear systems; analysis of systems with linear time-invariant perturbations; positive orthant stability; linear systems with delays; interpolation problems; the inverse problem of optimal control; system realization problems; nonconvex multi-criterion quadratic problems.
Each chapter is complemented by a detailed ‘notes and references’ section which includes a lot of additional material: proofs, precise statements, elaborations, historical notes, and hints to the extensive bibliography (which, according to the authors, in spite of its size of more than 500 titles does not claim for completeness). The book is primarily intended for the researcher in system and control theory, but it can also serve as a source of application problems for researchers in convex optimization. It can be strongly recommended to everybody interested in the subject.
Reviewer: W.Müller (Berlin)

MSC:

93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory
65K05 Numerical mathematical programming methods
90C25 Convex programming
34D99 Stability theory for ordinary differential equations
93D10 Popov-type stability of feedback systems
93D15 Stabilization of systems by feedback
93E15 Stochastic stability in control theory
15A45 Miscellaneous inequalities involving matrices

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp