Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Noncommutative homology of some three-dimensional quantum spaces.(English)Zbl 0814.16006

The Hochschild and cyclic homology are computed for some three- dimensional quantum spaces (type A algebras), introduced by Artin and Schelter. It is shown that the Hochschild homology is determined by the homology of the Poisson variety associated to the type A algebra.

MSC:

16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)
17B37 Quantum groups (quantized enveloping algebras) and related deformations
16W30 Hopf algebras (associative rings and algebras) (MSC2000)

Cite

References:

[1]Artin, M. and Schelter, W.: Graded algebras of global dimension 3,Adv. in Math. 66 (1987), 171-216. ·Zbl 0633.16001 ·doi:10.1016/0001-8708(87)90034-X
[2]Artin, M., Tate, J., and Van den Bergh, M.: Some algebras associated to automorphisms of elliptic curves,The Grothendieck Festschrift, Birkhäuser, Basel, 1990. ·Zbl 0744.14024
[3]Artin, M., Tate, J., and Van den Bergh, M.: Modules over regular algebras of dimension 3,Invent. Math. 106 (1991), 335-388. ·Zbl 0763.14001 ·doi:10.1007/BF01243916
[4]Beilinson, A., Ginsburg, V., and Soergel, W.: Koszul duality patterns in representation theory, Preprint, 1992.
[5]Brylinski, J. L.: A differential complex for Poisson manifolds,J. Differential Geom. 28 (1988), 93-114. ·Zbl 0634.58029
[6]Cartan, H. and Eilenberg, S.:Homological Algebra, Princeton University Press, Princeton, NJ, 1956.
[7]Feng, P. and Tsygan, B.: Hochschild and cyclic homology of quantum groups,Comm. Math. Phys. 140 (1991), 481-521. ·Zbl 0743.17020 ·doi:10.1007/BF02099132
[8]Hochschild, G., Kostant, B., and Rosenberg, A.: Differential forms on regular affine algebras,Trans. Amer. Math. Soc. 102 (1962), 383-408. ·Zbl 0102.27701 ·doi:10.1090/S0002-9947-1962-0142598-8
[9]Kassel, C.: L’homologie cyclique des algèbres enveloppantes,Invent. Math. 91 (1988), 221-251. ·Zbl 0653.17007 ·doi:10.1007/BF01389366
[10]Loday, J.-L. and Quillen, D.: Cyclic homology and the Lie algebra homology of matrices,Comment. Math. Helv. 59 (1984), 565-591. ·Zbl 0565.17006 ·doi:10.1007/BF02566367
[11]Manin, Y. I.: Quantum groups and non-commutative geometry, Tech. report, Centre de Recherches Mathématiques, Université de Montreal, 1988. ·Zbl 0724.17006
[12]Nastacescu, C. and Van Oystaeyen, F.:Graded Ring Theory, North-Holland, Amsterdam, 1982.
[13]Nuss, P.: L’homologie cyclique des algèbres enveloppantes des algèbres de Lie de dimension trois,J. Pure Appl. Algebra 73 (1991), 39-71. ·Zbl 0743.17014 ·doi:10.1016/0022-4049(91)90105-B
[14]Odeskii, A. V. and Feigin, B. L.: Elliptic Sklyanin algebras,Funktsional. Anal. i Prilozhen. 23 (1989), No. 3, 45-54 (Russian). ·Zbl 0687.17001
[15]Odeskii, A. V. and Feigin, B. L.: Sklyanin algebras associated with an elliptic curve, Preprint, 1989.
[16]Takhtadjian, L. A.: Noncommutative homology of quantum tori,Functional Anal. Appl. 23 (1989), 147-149. ·Zbl 0708.19003 ·doi:10.1007/BF01078791
[17]Tate, J. and Van den Bergh, M.: Homological properties of Sklyanin algebras, in preparation. ·Zbl 0876.17010
[18]Wambst, M.: Complexes de Koszul quantiques, Preprint Université Louis Pasteur, Strasbourg, 1992.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp