Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the dimension vectors in preprojective components.(English)Zbl 0813.16008

For a finite dimensional algebra \(A\) over an algebraically closed field \(K\), let \(S_ 1,\dots, S_ n\) denote the isomorphism classes of simple \(A\)-modules. Assume that the quiver of \(A\) has no oriented cycles and that the numbering of the \(S_ i\) is such that \(\text{Ext}(S_ i,S_ j) = 0\) for \(i > j\). Consider the bilinear form \(( , )\) on \(\mathbb{Z}^ n = \mathbb{Z} S_ 1 \oplus \dots \oplus \mathbb{Z} S_ n\) with \((S_ i, S_ j) = \sum^ 2_{k = 0}(-1)^ k \dim_ K \text{Ext}^ k_ A (S_ i,S_ j)\). On the double cone \(\pm \mathbb{N}^ n \subset \mathbb{Z}^ n\) let \(\sigma_ i\) be the truncated reflection \(\sigma_ i(X) = X - ((X,S_ i) + (S_ i,X))S_ i\) if this expression is in \(\pm \mathbb{N}^ n\), and \(\sigma_ n(X) = X\) otherwise. The author proves the following theorem. Suppose that the Auslander-Reiten quiver of \(A\) has a preprojective component \(C\), and let \(M \in C\) be non-projective with dimension vector \(\underline{\text{dim} }M\), i.e. (\(\underline{\text{dim} }M)_ i\) is the multiplicity of \(S_ i\) in a Jordan-Hölder series of \(M\). If \(\tau M\) denotes the Auslander-Reiten translate of \(M\), then \(\underline{\text{dim} }M = \sigma_ n \dots \sigma_ 1(\underline{\text{dim} }\tau M)\). Similarly, the dimension vectors of the projectives and injectives in \(C\) can be calculated by means of the \(\sigma_ i\).

MSC:

16G30 Representations of orders, lattices, algebras over commutative rings
16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
16D60 Simple and semisimple modules, primitive rings and ideals in associative algebras
16D40 Free, projective, and flat modules and ideals in associative algebras
16D50 Injective modules, self-injective associative rings

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp