[1] | Adjerid, S.; Flaherty, J. E., A local refinement finite element method for two-dimensional parabolic systems, SIAM J. Sci. Statist. Comput., 9, 792-811 (1988) ·Zbl 0659.65105 |
[2] | Arney, D. C.; Flaherty, J. E., An adaptive local mesh refinement method for time-dependent partial differential equations, Appl. Numer. Math., 5, 4, 257-274 (1989) ·Zbl 0675.65119 |
[3] | Arney, D. C.; Flaherty, J. E., An adaptive mesh-moving and local refinement method for time dependent partial differential equations, ACM Trans. Math. Software, 16, 48-71 (1990) ·Zbl 0900.65284 |
[4] | Babuška, I.; Duran, R.; Rodriguez, R., Analysis of the efficiency of an a posteriori error estimator for linear triangular elements, SIAM J. Numer. Anal., 29, 4, 947-964 (1992) ·Zbl 0759.65069 |
[5] | Babuška, I.; Rheinboldt, W. C., Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15, 736-754 (1978) ·Zbl 0398.65069 |
[6] | Babuška, I.; Rheinboldt, W. C., A posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg., 12, 1597-1615 (1978) ·Zbl 0396.65068 |
[7] | Bank, R. E.; Weiser, A., Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 44, 283-301 (1985) ·Zbl 0569.65079 |
[8] | Bank, R. E.; Welfert, B. D., A posteriori error estimates for the Stokes equations: A comparison, Comput. Methods Appl. Mech. Engrg., 82, 1-3, 323-340 (1990) ·Zbl 0725.65106 |
[9] | Bank, R. E.; Welfert, B. D., A posteriori error estimates for the Stokes problem (1990), Univ. California: Univ. California San Diego, CA, Preprint ·Zbl 0725.65106 |
[10] | Bänsch, E., An adaptive finite-element strategy for the three-dimensional time-dependent Navier—Stokes equations, J. Comput. Appl. Math., 36, 1, 3-28 (1991) ·Zbl 0727.76078 |
[11] | Bieterman, M.; Babuška, I., The finite element method for parabolic equations. I A posteriori error estimation, Numer. Math., 30, 339-371 (1982) ·Zbl 0534.65072 |
[12] | Bieterman, M.; Babuška, I., The finite element method for parabolic equations. II A posteriori error estimation and adaptive approach, Numer. Math., 40, 373-406 (1982) ·Zbl 0534.65073 |
[13] | Duran, R.; Muschietti, M. A.; Rodriguez, R., On the asymptotic exactness of error estimators for linear triangular elements, Numer. Math., 59, 107-127 (1991) ·Zbl 0716.65098 |
[14] | Jarausch, H., On an adaptive grid refining technique for finite element approximations, SIAM J. Sci. Statist. Comput., 7, 1105-1120 (1986) ·Zbl 0616.65107 |
[15] | Johnson, C.; Nic, Yi-Yong; Thomée, V., An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem, SIAM J. Numer. Anal., 27, 277-291 (1990) ·Zbl 0701.65063 |
[16] | Mitchell, W. F., A comparison of adaptive refinement techniques for elliptic problems, ACM Trans. Math. Software, 15, 4, 326-347 (1989) ·Zbl 0900.65306 |
[17] | Rheinboldt, W. C., On a theory of mesh-refinement processes, SIAM J. Numer. Anal., 17, 766-778 (1980) ·Zbl 0472.65009 |
[18] | Rivara, M.-C., Design and data structure of fully adaptive, multigrid, finite element software, ACM Trans. Math. Software, 10, 242-264 (1984) ·Zbl 0578.65112 |
[19] | Rivara, M. C., Algorithms for refining triangular grids suitable for adaptive and multigrid techniques, Internat. J. Numer. Methods Engrg., 20, 745-756 (1984) ·Zbl 0536.65085 |
[20] | Sewell, E. G., Automatic generation of triangulations for piecewise polynomial approximations, (Ph.D. Thesis (1972), Purdue Univ: Purdue Univ West Lafayette, IN) |
[21] | Strouboulis, T.; Oden, J. T., A posteriori error estimation of finite element approximations in fluid mechanics, Comput. Methods Appl. Mech. Engrg., 78, 2, 201-242 (1990) ·Zbl 0711.76061 |
[22] | Verfürth, R., A posteriori error estimators for the Stokes equations, Numer. Math., 55, 309-325 (1989) ·Zbl 0674.65092 |
[23] | Verfürth, R., A posteriori error estimators and adaptive mesh-refinement for a mixed finite element discretization of the Navier—Stokes equations, (Hackbusch, W.; Rannacher, R., Numerical Treatment of the Navier—Stokes Equations. Numerical Treatment of the Navier—Stokes Equations, Notes Numer. Fluid Mech., 30 (1989), Vieweg: Vieweg Braunschweig), 145-152 ·Zbl 0725.76053 |
[24] | Verfürth, R., A posteriori error estimators for the Stokes equations. II Nonconforming methods, Numer. Math., 60, 235-249 (1989) ·Zbl 0739.76035 |
[25] | Verfürth, R., A posteriori error estimators and adaptive mesh-refinement techniques for the Navier—Strokes equations, (Gunzburger, M. D.; Nicolaides, R. A., Incompressible CFD — Trends and Advances (1993), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 1447-1475 ·Zbl 1190.76004 |