Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A posteriori error estimation and adaptive mesh-refinement techniques.(English)Zbl 0811.65089

To make the ideas more transparent the author restricts the analysis to a simple model problem: a conforming finite element method for the two- dimensional Poisson equation with mixed Dirichlet-Neumann boundary conditions.
There are three a posteriori error estimators which are based on the evaluation of suitable local residuals. It is proved that up to higher- order terms all of them yield global upper and local lower bounds for the true error and that these estimators are all equivalent.
Using these estimators the adaptive mesh-refinement techniques are constructed, that allow to detect local singularities of the solution and to appropriately refine the grid near these singularities. In the end two examples are given, that prove the efficiency of the error estimators and the mesh-refinement techniques.
Reviewer: V.Makarov (Kiev)

MSC:

65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

Cite

References:

[1]Adjerid, S.; Flaherty, J. E., A local refinement finite element method for two-dimensional parabolic systems, SIAM J. Sci. Statist. Comput., 9, 792-811 (1988) ·Zbl 0659.65105
[2]Arney, D. C.; Flaherty, J. E., An adaptive local mesh refinement method for time-dependent partial differential equations, Appl. Numer. Math., 5, 4, 257-274 (1989) ·Zbl 0675.65119
[3]Arney, D. C.; Flaherty, J. E., An adaptive mesh-moving and local refinement method for time dependent partial differential equations, ACM Trans. Math. Software, 16, 48-71 (1990) ·Zbl 0900.65284
[4]Babuška, I.; Duran, R.; Rodriguez, R., Analysis of the efficiency of an a posteriori error estimator for linear triangular elements, SIAM J. Numer. Anal., 29, 4, 947-964 (1992) ·Zbl 0759.65069
[5]Babuška, I.; Rheinboldt, W. C., Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15, 736-754 (1978) ·Zbl 0398.65069
[6]Babuška, I.; Rheinboldt, W. C., A posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg., 12, 1597-1615 (1978) ·Zbl 0396.65068
[7]Bank, R. E.; Weiser, A., Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 44, 283-301 (1985) ·Zbl 0569.65079
[8]Bank, R. E.; Welfert, B. D., A posteriori error estimates for the Stokes equations: A comparison, Comput. Methods Appl. Mech. Engrg., 82, 1-3, 323-340 (1990) ·Zbl 0725.65106
[9]Bank, R. E.; Welfert, B. D., A posteriori error estimates for the Stokes problem (1990), Univ. California: Univ. California San Diego, CA, Preprint ·Zbl 0725.65106
[10]Bänsch, E., An adaptive finite-element strategy for the three-dimensional time-dependent Navier—Stokes equations, J. Comput. Appl. Math., 36, 1, 3-28 (1991) ·Zbl 0727.76078
[11]Bieterman, M.; Babuška, I., The finite element method for parabolic equations. I A posteriori error estimation, Numer. Math., 30, 339-371 (1982) ·Zbl 0534.65072
[12]Bieterman, M.; Babuška, I., The finite element method for parabolic equations. II A posteriori error estimation and adaptive approach, Numer. Math., 40, 373-406 (1982) ·Zbl 0534.65073
[13]Duran, R.; Muschietti, M. A.; Rodriguez, R., On the asymptotic exactness of error estimators for linear triangular elements, Numer. Math., 59, 107-127 (1991) ·Zbl 0716.65098
[14]Jarausch, H., On an adaptive grid refining technique for finite element approximations, SIAM J. Sci. Statist. Comput., 7, 1105-1120 (1986) ·Zbl 0616.65107
[15]Johnson, C.; Nic, Yi-Yong; Thomée, V., An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem, SIAM J. Numer. Anal., 27, 277-291 (1990) ·Zbl 0701.65063
[16]Mitchell, W. F., A comparison of adaptive refinement techniques for elliptic problems, ACM Trans. Math. Software, 15, 4, 326-347 (1989) ·Zbl 0900.65306
[17]Rheinboldt, W. C., On a theory of mesh-refinement processes, SIAM J. Numer. Anal., 17, 766-778 (1980) ·Zbl 0472.65009
[18]Rivara, M.-C., Design and data structure of fully adaptive, multigrid, finite element software, ACM Trans. Math. Software, 10, 242-264 (1984) ·Zbl 0578.65112
[19]Rivara, M. C., Algorithms for refining triangular grids suitable for adaptive and multigrid techniques, Internat. J. Numer. Methods Engrg., 20, 745-756 (1984) ·Zbl 0536.65085
[20]Sewell, E. G., Automatic generation of triangulations for piecewise polynomial approximations, (Ph.D. Thesis (1972), Purdue Univ: Purdue Univ West Lafayette, IN)
[21]Strouboulis, T.; Oden, J. T., A posteriori error estimation of finite element approximations in fluid mechanics, Comput. Methods Appl. Mech. Engrg., 78, 2, 201-242 (1990) ·Zbl 0711.76061
[22]Verfürth, R., A posteriori error estimators for the Stokes equations, Numer. Math., 55, 309-325 (1989) ·Zbl 0674.65092
[23]Verfürth, R., A posteriori error estimators and adaptive mesh-refinement for a mixed finite element discretization of the Navier—Stokes equations, (Hackbusch, W.; Rannacher, R., Numerical Treatment of the Navier—Stokes Equations. Numerical Treatment of the Navier—Stokes Equations, Notes Numer. Fluid Mech., 30 (1989), Vieweg: Vieweg Braunschweig), 145-152 ·Zbl 0725.76053
[24]Verfürth, R., A posteriori error estimators for the Stokes equations. II Nonconforming methods, Numer. Math., 60, 235-249 (1989) ·Zbl 0739.76035
[25]Verfürth, R., A posteriori error estimators and adaptive mesh-refinement techniques for the Navier—Strokes equations, (Gunzburger, M. D.; Nicolaides, R. A., Incompressible CFD — Trends and Advances (1993), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 1447-1475 ·Zbl 1190.76004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp