Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Deriving DG categories.(English)Zbl 0799.18007

The author investigates the derived category of a differential \(\mathbb{Z}\)- graded category.
As applications:
1. a “triangulated analogue” of a theorem ofP. Freyd [“Abelian Categories”, Harper & Row (1964; Zbl 0121.021)] andP. Gabriel [Bull. Soc. Math. France 90, 323-448 (1962; Zbl 0201.356)] characterizing module categories among abelian categories is deduced;
2. a “Morita theorem” is proved and a formalism for Koszul duality is developed.

MSC:

18E30 Derived categories, triangulated categories (MSC2010)
16D90 Module categories in associative algebras
13D03 (Co)homology of commutative rings and algebras (e.g., Hochschild, André-Quillen, cyclic, dihedral, etc.)

Cite

References:

[1]A. A. BEILINSON , V. GINSBURG and V. A. SCHECHTMAN , Koszul duality (Journal of Geometry and Physics, Vol. 5, 1988 , pp. 317-350). MR 91c:18011 | Zbl 0695.14009 ·Zbl 0695.14009 ·doi:10.1016/0393-0440(88)90028-9
[2]A. A. BEILINSON V. GINSBURG and W. SOERGEL , Koszul Duality Patterns in Representation Theory , preprint, 1991 .
[3]E. H. BROWN , Cohomology Theories (Ann. of Math., Vol. 75, 1962 , pp. 467-484). MR 25 #1551 | Zbl 0101.40603 ·Zbl 0101.40603 ·doi:10.2307/1970209
[4]H. CARTAN and S. EILENBERG , Homological Algebra , Princeton University Press, 1956 . MR 17,1040e | Zbl 0075.24305 ·Zbl 0075.24305
[5]P. FREYD , Abelian Categories , Harper, 1966 . MR 35 #231 | Zbl 0121.02103 ·Zbl 0121.02103
[6]P. GABRIEL , Des catégories abéliennes (Bull. Soc. Math. France, Vol. 90, 1962 , pp. 323-448). Numdam | MR 38 #1144 | Zbl 0201.35602 ·Zbl 0201.35602
[7]P. GABRIEL and A. V. ROITER , Representations of Finite-dimensional Algebras, Encyclopaedia of Mathematical Sciences , Vol. 73, Springer, 1992 . MR 94h:16001b | Zbl 0839.16001 ·Zbl 0839.16001
[8]A. GROTHENDIECK , Éléments de Géométrie algébrique, III, Étude cohomologique des faisceaux cohérents (Publ. Math. IHES, Vol. 11, 1961 ). Numdam | Zbl 0118.36206 ·Zbl 0118.36206 ·doi:10.1007/BF02684778
[9]D. HAPPEL , On the derived Category of a Finite-dimensional Algebra (Comment. Math. Helv., Vol. 62, 1987 , pp. 339-389). MR 89c:16029 | Zbl 0626.16008 ·Zbl 0626.16008 ·doi:10.1007/BF02564452
[10]G. HOCHSCHILD , B. KOSTANT and A. ROSENBERG , Differential Forms on regular affine Algebras (Trans. Amer. Math. Soc., Vol. 102, 1962 , pp. 383-408). MR 26 #167 | Zbl 0102.27701 ·Zbl 0102.27701 ·doi:10.2307/1993614
[11]L. ILLUSIE , Complexe cotangent et déformations II (Springer LNM, Vol. 283, 1972 ). MR 58 #10886b | Zbl 0238.13017 ·Zbl 0238.13017 ·doi:10.1007/BFb0059573
[12]B. KELLER , Chain Complexes and Stable Categories (Manus. Math., Vol. 67, 1990 , pp. 379-417). Article | MR 91h:18006 | Zbl 0753.18005 ·Zbl 0753.18005 ·doi:10.1007/BF02568439
[13]B. KELLER , A Remark on Tilting Theory and DG algebras (Manus. Math., Vol. 79, 1993 , pp. 247-252). Article | MR 94d:18016 | Zbl 0810.16006 ·Zbl 0810.16006 ·doi:10.1007/BF02568343
[14]B. KELLER and D. VOSSIECK , Sous les catégories dérivées (C. R. Acad. Sci. Paris, Vol. 305, Série I, 1987 , pp. 225-228). MR 88m:18014 | Zbl 0628.18003 ·Zbl 0628.18003
[15]S. MACLANE , Homology , Springer-Verlag, 1963 . MR 28 #122 | Zbl 0133.26502 ·Zbl 0133.26502
[16]D. QUILLEN , Higher Algebraic K-theory I (Springer LNM, Vol. 341, 1973 , pp. 85-147). MR 49 #2895 | Zbl 0292.18004 ·Zbl 0292.18004
[17]A. NEEMAN , The Connection between the K-theory Localization Theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel , Preprint. Numdam | Zbl 0868.19001 ·Zbl 0868.19001
[18]D. C. RAVENEL , Localization with Respect to Certain Periodic Homology Theories (Amer J. of Math., Vol. 106, 1984 , pp. 351-414). MR 85k:55009 | Zbl 0586.55003 ·Zbl 0586.55003 ·doi:10.2307/2374308
[19]J. RICKARD , Morita Theory for Derived Categories (Journal of the London Math. Soc., 39, 1989 , 436-456). MR 91b:18012 | Zbl 0642.16034 ·Zbl 0642.16034 ·doi:10.1112/jlms/s2-39.3.436
[20]J. RICKARD Derived Equivalences as Derived Functors (J. London Math. Soc., Vol. 43, 1991 , pp. 37-48). MR 92b:16043 | Zbl 0683.16030 ·Zbl 0683.16030 ·doi:10.1112/jlms/s2-43.1.37
[21]G. RINEHART , Differential Forms on General Commutative Algebras (Trans. Amer. Math. Soc., Vol. 108, 1965 , pp. 195-222). MR 27 #4850 | Zbl 0113.26204 ·Zbl 0113.26204 ·doi:10.2307/1993603
[22]H. TODA , Composition Methods in Homotopy Groups of Spheres , Princeton University Press, 1962 . MR 26 #777 | Zbl 0101.40703 ·Zbl 0101.40703
[23]J.-L. VERDIER , Catégories dérivées, état 0, SGA 4 1/2 (Springer LNM, Vol. 569, 1977 , pp. 262-311). MR 57 #3132 | Zbl 0407.18008 ·Zbl 0407.18008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp