[1] | 1 S. Angenent, Parabolic equations for curves on surfaces. I. Curves with \(p\)-integrable curvature , Ann. of Math. (2) 132 (1990), no. 3, 451-483. JSTOR: ·Zbl 0789.58070 ·doi:10.2307/1971426 |
[2] | 2 S. Angenent, Parabolic equations for curves on surfaces. II. Intersections, blow-up and generalized solutions , Ann. of Math. (2) 133 (1991), no. 1, 171-215. JSTOR: ·Zbl 0749.58054 ·doi:10.2307/2944327 |
[3] | S. Angenent and M. Gurtin, Multiphase thermomechanics with interfacial structure. II. Evolution of an isothermal interface , Arch. Rational Mech. Anal. 108 (1989), no. 4, 323-391. ·Zbl 0723.73017 ·doi:10.1007/BF01041068 |
[4] | R. Benson, Euclidean geometry and convexity , McGraw-Hill Book Co., New York, 1966. ·Zbl 0187.44103 |
[5] | T. Bonnesen and W. Fenchel, Theory of convex bodies , BCS Associates, Moscow, ID, 1987, Translated from the German, and edited by L. Boron and C. Christenson and B. Smith. ·Zbl 0628.52001 |
[6] | W. Blaschke, Integralgeometrie. XI: Variationsrechnung , Abh. Math. Sem. Univ. Hasischen. 11 (1936), 359-366. ·Zbl 0014.11902 ·doi:10.1007/BF02940732 |
[7] | T. Bonnesen, Les problemes des isoperimetres et des isepiphanes , Gauthiers-Villars, Paris, 1929. ·JFM 55.0431.08 |
[8] | H. Busemann, The isoperimetric problem in the Minkowski plane , Amer. J. Math. 69 (1947), 863-871. JSTOR: ·Zbl 0034.25201 ·doi:10.2307/2371807 |
[9] | H. Busemann, The foundations of Minkowskian geometry , Comment. Math. Helv. 24 (1950), 156-187. ·Zbl 0040.37502 ·doi:10.1007/BF02567031 |
[10] | G. D. Chakerian, Integral geometry in the Minkowski plane , Duke Math. J. 29 (1962), 375-381. ·Zbl 0105.35003 ·doi:10.1215/S0012-7094-62-02936-8 |
[11] | G. D. Chakerian and J. R. Sangwine-Yager, A generalization of Minkowski’s inequality for plane convex sets , Geom. Dedicata 8 (1979), no. 4, 437-444. ·Zbl 0432.52002 ·doi:10.1007/BF00183259 |
[12] | C. L. Epstein and M. Gage, The curve shortening flow , Wave motion: theory, modelling, and computation (Berkeley, Calif., 1986), Math. Sci. Res. Inst. Publ., vol. 7, Springer, New York, 1987, pp. 15-59. ·Zbl 0645.53028 |
[13] | H. Flanders, A proof of Minkowski’s inequality for convex curves , Amer. Math. Monthly 75 (1968), 581-593. JSTOR: ·Zbl 0162.25803 ·doi:10.2307/2313773 |
[14] | M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves , J. Differential Geom. 23 (1986), no. 1, 69-96. ·Zbl 0621.53001 |
[15] | M. Gage, An isoperimetric inequality with applications to curve shortening , Duke Math. J. 50 (1983), no. 4, 1225-1229. ·Zbl 0534.52008 ·doi:10.1215/S0012-7094-83-05052-4 |
[16] | M. Gage, Curve shortening makes convex curves circular , Invent. Math. 76 (1984), no. 2, 357-364. ·Zbl 0542.53004 ·doi:10.1007/BF01388602 |
[17] | M. Gage, On an area-preserving evolution equation for plane curves , Nonlinear problems in geometry (Mobile, Ala., 1985), Contemp. Math., vol. 51, Amer. Math. Soc., Providence, RI, 1986, pp. 51-62. ·Zbl 0608.53002 |
[18] | M. Gage, Positive centers and the Bonnesen inequality , Proc. Amer. Math. Soc. 110 (1990), no. 4, 1041-1048. JSTOR: ·Zbl 0725.52003 ·doi:10.2307/2047754 |
[19] | M. Gage and Y. Li, Evolving plane curves by curvature in relative geometries II , ·Zbl 0811.53033 ·doi:10.1215/S0012-7094-94-07503-0 |
[20] | M. Grayson, The heat equation shrinks embedded plane curves to round points , J. Differential Geom. 26 (1987), no. 2, 285-314. ·Zbl 0667.53001 |
[21] | M. Grayson, Shortening embedded curves , Ann. of Math. (2) 129 (1989), no. 1, 71-111. JSTOR: ·Zbl 0686.53036 ·doi:10.2307/1971486 |
[22] | G. G. Lorentz, Approximation of functions , Holt, Rinehart and Winston, New York, 1966. ·Zbl 0153.38901 |
[23] | F. Morgan, The cone over the Clifford torus in \(\mathbf R^ 4\) is \(\Phi\)-minimizing , Math. Ann. 289 (1991), no. 2, 341-354. ·Zbl 0725.49013 ·doi:10.1007/BF01446576 |
[24] | W. W. Mullins, Two-dimensional motion of idealized grain boundaries , J. Appl. Phys. 27 (1956), 900-904. ·doi:10.1063/1.1722511 |
[25] | R. Osserman, Bonnesen-style isoperimetric inequalities , Amer. Math. Monthly 86 (1979), no. 1, 1-29. JSTOR: ·Zbl 0404.52012 ·doi:10.2307/2320297 |
[26] | C. M. Petty, On the geometry of the Minkowski plane , Riv. Mat. Univ. Parma 6 (1955), 269-292. ·Zbl 0067.40102 |
[27] | J. R. Sangwine-Yager, Bonnesen-style inequalities for Minkowski relative geometry , Trans. Amer. Math. Soc. 307 (1988), no. 1, 373-382. JSTOR: ·Zbl 0652.52010 ·doi:10.2307/2000768 |
[28] | J. Taylor, Crystalline variational problems , Bull. Amer. Math. Soc. 84 (1978), no. 4, 568-588. ·Zbl 0392.49022 ·doi:10.1090/S0002-9904-1978-14499-1 |
[29] | J. Taylor, Constructions and conjectures in crystalline nondifferential geometry , to appear in the proceedings of the Conference in Differential Geometry, Rio de Janeiro, 1988, Pittman. ·Zbl 0725.53011 |
[30] | J. Taylor, Mean curvature and weighted mean curvature , to appear in Metallurgica. ·Zbl 0968.53046 |
[31] | P. W. Voorhees, S. R. Coriell, G. B. McFadden, and R. F. Sekerka, The effect of anisotropic crystal-melt surface tension on grain boundary groove morphology , J. Crystal Growth 67 (1984), 425-440. |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.