Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Evolving plane curves by curvature in relative geometries.(English)Zbl 0798.53041

In this paper the motion of a plane curve in which the velocity vector field is determined at each point by the curvature of the curve and by the direction of the curves normal vector is studied. Let \(X\) be the position vector of the curve, the subscript \(t\) denote partial differentiation with respect to time, \(N = (-\cos \theta, -\sin \theta)\) be the normal vector to the curve, \(\nu\) be some given function of direction which is smooth and strictly positive. The main result is the following: Theorem. Let \(X_ t = \nu(\theta)kN\) be the equation describing the motion. If \(\nu\) can be written as \(\nu(\theta) = \widetilde{h}(\theta)/\widetilde{k}(\theta)\), where \(\widetilde{h}\) and \(\widetilde{k}\) are the support function and the curvature respectively of some smooth, symmetric strictly convex body \(\widetilde{K}\), then every convex curve converges to the shape of \(\partial \widetilde{K}\) as the curve shrinks to a point. More precisely, the laminae enclosed by the evolving curves, when renormalized to have the same area as \(\widetilde{K}\) and appropriately translated, will converge to \(\widetilde{K}\) in the Hausdorff metric.

MSC:

53C20 Global Riemannian geometry, including pinching
53A15 Affine differential geometry
53A04 Curves in Euclidean and related spaces

Cite

References:

[1]1 S. Angenent, Parabolic equations for curves on surfaces. I. Curves with \(p\)-integrable curvature , Ann. of Math. (2) 132 (1990), no. 3, 451-483. JSTOR: ·Zbl 0789.58070 ·doi:10.2307/1971426
[2]2 S. Angenent, Parabolic equations for curves on surfaces. II. Intersections, blow-up and generalized solutions , Ann. of Math. (2) 133 (1991), no. 1, 171-215. JSTOR: ·Zbl 0749.58054 ·doi:10.2307/2944327
[3]S. Angenent and M. Gurtin, Multiphase thermomechanics with interfacial structure. II. Evolution of an isothermal interface , Arch. Rational Mech. Anal. 108 (1989), no. 4, 323-391. ·Zbl 0723.73017 ·doi:10.1007/BF01041068
[4]R. Benson, Euclidean geometry and convexity , McGraw-Hill Book Co., New York, 1966. ·Zbl 0187.44103
[5]T. Bonnesen and W. Fenchel, Theory of convex bodies , BCS Associates, Moscow, ID, 1987, Translated from the German, and edited by L. Boron and C. Christenson and B. Smith. ·Zbl 0628.52001
[6]W. Blaschke, Integralgeometrie. XI: Variationsrechnung , Abh. Math. Sem. Univ. Hasischen. 11 (1936), 359-366. ·Zbl 0014.11902 ·doi:10.1007/BF02940732
[7]T. Bonnesen, Les problemes des isoperimetres et des isepiphanes , Gauthiers-Villars, Paris, 1929. ·JFM 55.0431.08
[8]H. Busemann, The isoperimetric problem in the Minkowski plane , Amer. J. Math. 69 (1947), 863-871. JSTOR: ·Zbl 0034.25201 ·doi:10.2307/2371807
[9]H. Busemann, The foundations of Minkowskian geometry , Comment. Math. Helv. 24 (1950), 156-187. ·Zbl 0040.37502 ·doi:10.1007/BF02567031
[10]G. D. Chakerian, Integral geometry in the Minkowski plane , Duke Math. J. 29 (1962), 375-381. ·Zbl 0105.35003 ·doi:10.1215/S0012-7094-62-02936-8
[11]G. D. Chakerian and J. R. Sangwine-Yager, A generalization of Minkowski’s inequality for plane convex sets , Geom. Dedicata 8 (1979), no. 4, 437-444. ·Zbl 0432.52002 ·doi:10.1007/BF00183259
[12]C. L. Epstein and M. Gage, The curve shortening flow , Wave motion: theory, modelling, and computation (Berkeley, Calif., 1986), Math. Sci. Res. Inst. Publ., vol. 7, Springer, New York, 1987, pp. 15-59. ·Zbl 0645.53028
[13]H. Flanders, A proof of Minkowski’s inequality for convex curves , Amer. Math. Monthly 75 (1968), 581-593. JSTOR: ·Zbl 0162.25803 ·doi:10.2307/2313773
[14]M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves , J. Differential Geom. 23 (1986), no. 1, 69-96. ·Zbl 0621.53001
[15]M. Gage, An isoperimetric inequality with applications to curve shortening , Duke Math. J. 50 (1983), no. 4, 1225-1229. ·Zbl 0534.52008 ·doi:10.1215/S0012-7094-83-05052-4
[16]M. Gage, Curve shortening makes convex curves circular , Invent. Math. 76 (1984), no. 2, 357-364. ·Zbl 0542.53004 ·doi:10.1007/BF01388602
[17]M. Gage, On an area-preserving evolution equation for plane curves , Nonlinear problems in geometry (Mobile, Ala., 1985), Contemp. Math., vol. 51, Amer. Math. Soc., Providence, RI, 1986, pp. 51-62. ·Zbl 0608.53002
[18]M. Gage, Positive centers and the Bonnesen inequality , Proc. Amer. Math. Soc. 110 (1990), no. 4, 1041-1048. JSTOR: ·Zbl 0725.52003 ·doi:10.2307/2047754
[19]M. Gage and Y. Li, Evolving plane curves by curvature in relative geometries II , ·Zbl 0811.53033 ·doi:10.1215/S0012-7094-94-07503-0
[20]M. Grayson, The heat equation shrinks embedded plane curves to round points , J. Differential Geom. 26 (1987), no. 2, 285-314. ·Zbl 0667.53001
[21]M. Grayson, Shortening embedded curves , Ann. of Math. (2) 129 (1989), no. 1, 71-111. JSTOR: ·Zbl 0686.53036 ·doi:10.2307/1971486
[22]G. G. Lorentz, Approximation of functions , Holt, Rinehart and Winston, New York, 1966. ·Zbl 0153.38901
[23]F. Morgan, The cone over the Clifford torus in \(\mathbf R^ 4\) is \(\Phi\)-minimizing , Math. Ann. 289 (1991), no. 2, 341-354. ·Zbl 0725.49013 ·doi:10.1007/BF01446576
[24]W. W. Mullins, Two-dimensional motion of idealized grain boundaries , J. Appl. Phys. 27 (1956), 900-904. ·doi:10.1063/1.1722511
[25]R. Osserman, Bonnesen-style isoperimetric inequalities , Amer. Math. Monthly 86 (1979), no. 1, 1-29. JSTOR: ·Zbl 0404.52012 ·doi:10.2307/2320297
[26]C. M. Petty, On the geometry of the Minkowski plane , Riv. Mat. Univ. Parma 6 (1955), 269-292. ·Zbl 0067.40102
[27]J. R. Sangwine-Yager, Bonnesen-style inequalities for Minkowski relative geometry , Trans. Amer. Math. Soc. 307 (1988), no. 1, 373-382. JSTOR: ·Zbl 0652.52010 ·doi:10.2307/2000768
[28]J. Taylor, Crystalline variational problems , Bull. Amer. Math. Soc. 84 (1978), no. 4, 568-588. ·Zbl 0392.49022 ·doi:10.1090/S0002-9904-1978-14499-1
[29]J. Taylor, Constructions and conjectures in crystalline nondifferential geometry , to appear in the proceedings of the Conference in Differential Geometry, Rio de Janeiro, 1988, Pittman. ·Zbl 0725.53011
[30]J. Taylor, Mean curvature and weighted mean curvature , to appear in Metallurgica. ·Zbl 0968.53046
[31]P. W. Voorhees, S. R. Coriell, G. B. McFadden, and R. F. Sekerka, The effect of anisotropic crystal-melt surface tension on grain boundary groove morphology , J. Crystal Growth 67 (1984), 425-440.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp