Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Sliced skein algebras and geometric Kauffman bracket.(English)Zbl 07979655

Summary: The sliced skein algebra of a closed surface of genus \(g\) with \(m\) punctures, \( \mathfrak{S} = {\Sigma}_{g , m} \), is the quotient of the Kauffman bracket skein algebra \(\mathcal{S}_\xi(\mathfrak{S})\) corresponding to fixing the scalar values of its peripheral curves. We show that the sliced skein algebra of a finite type surface is a domain if the ground ring is a domain. When the quantum parameter \(\xi\) is a root of unity we calculate the center of the sliced skein algebra and its PI-degree. Among applications we show that any smooth point of a sliced character variety is an Azumaya point of the skein algebra \(\mathcal{S}_\xi(\mathfrak{S})\). For any \(S L_2(\mathbb{C})\)-representation \(\rho\) of the fundamental group of an oriented connected 3-manifold \(M\) and a root of unity \(\xi\) with the order of \(\xi^2\) odd, we introduce the \(\rho \)-reduced skein module \(\mathcal{S}_{\xi , \rho}(M)\). We show that \(\mathcal{S}_{\xi , \rho}(M)\) has dimension 1 when \(M\) is closed and \(\rho\) is irreducible. We also show that if \(\rho\) is irreducible the \(\rho \)-reduced skein module of a handlebody, as a module over the skein algebra of its boundary, is simple and has the dimension equal to the PI-degree of the skein algebra of its boundary.

MSC:

57K31 Invariants of 3-manifolds (including skein modules, character varieties)
20G42 Quantum groups (quantized function algebras) and their representations

Cite

References:

[1]Abdiel, N.; Frohman, C., The localized skein algebra is Frobenius, Algebraic Geom. Topol., 17, 3341-3373, 2017 ·Zbl 1421.57015
[2]Barrett, J. W., Skein spaces and spin structures, Math. Proc. Camb. Philos. Soc., 126, 2, 267-275, 1999 ·Zbl 0939.57019
[3]Bullock, D.; Frohman, C.; Kania-Bartoszyńska, J., Understanding the Kauffman bracket skein module, J. Knot Theory Ramif., 8, 3, 265-277, 1999 ·Zbl 0932.57015
[4]Brown, K. A.; Goodearl, K. R., Lectures on Algebraic Quantum Groups, Advanced Courses in Mathematics. CRM Barcelona, 2002, Birkhäuser Verlag: Birkhäuser Verlag Basel ·Zbl 1027.17010
[5]Brown, K. A.; Gordon, I., Poisson orders, symplectic reflection algebras and representation theory, J. Reine Angew. Math., 559, 193-216, 2003 ·Zbl 1025.17007
[6]Bloomquist, W.; Karuo, H.; Lê, T., Degenerations of skein algebras and quantum traces, 2023
[7]Bloomquist, W.; Lê, T. T.Q., The Chebyshev-Frobenius homomorphism for stated skein modules of 3-manifolds, Math. Z., 301, 1, 1063-1105, 2022 ·Zbl 1498.57016
[8]Bullock, D., Rings of \(\operatorname{SL}_2(\mathbf{C})\)-characters and the Kauffman bracket skein module, Comment. Math. Helv., 72, 4, 521-542, 1997 ·Zbl 0907.57010
[9]Bonahon, F.; Wong, H., Quantum traces for representations of surface groups in \(\operatorname{SL}_2(\mathbb{C})\), Geom. Topol., 15, 3, 1569-1615, 2011 ·Zbl 1227.57003
[10]Bonahon, F.; Wong, H., Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations, Invent. Math., 204, 1, 195-243, 2016 ·Zbl 1383.57015
[11]Costantino, F.; Lê, T. T.Q., Stated skein algebras of surfaces, J. Eur. Math. Soc., 24, 12, 4063-4142, 2022 ·Zbl 1509.57013
[12]Charles, L.; Marché, J., Multicurves and regular functions on the representation variety of a surface in SU(2), Comment. Math. Helv., 87, 2, 409-431, 2012 ·Zbl 1246.57022
[13]Culler, M., Lifting representations to covering groups, Adv. Math., 59, 1, 64-70, 1986 ·Zbl 0582.57001
[14]Frohman, C.; Kania-Bartoszynska, J.; Lê, T., Unicity for representations of the Kauffman bracket skein algebra, Invent. Math., 215, 2, 609-650, 2019 ·Zbl 1491.57014
[15]Frohman, C.; Kania-Bartoszynska, J.; Lê, T., Dimension and trace of the Kauffman bracket skein algebra, Trans. Amer. Math. Soc. Ser. B, 8, 510-547, 2021 ·Zbl 1486.57023
[16]Frohman, C.; Kania-Bartoszynska, J.; Le, T., Skein algebras of three-manifolds at 4th roots of unity, 2023 ·Zbl 1537.57032
[17]Guruprasad, K.; Huebschmann, J.; Jeffrey, L.; Weinstein, A., Group systems, groupoids, and moduli spaces of parabolic bundles, Duke Math. J., 89, 2, 377-412, 1997 ·Zbl 0885.58011
[18]Ganev, I.; Jordan, D.; Safronov, P., The quantum Frobenius for character varieties and multiplicative quiver varieties, 2020
[19]Goldman, W. M., The symplectic nature of fundamental groups of surfaces, Adv. Math., 54, 2, 200-225, 1984 ·Zbl 0574.32032
[20]Goodearl, K. R.; Warfield, R. B., An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts, vol. 61, 2004, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1101.16001
[21]Hensel, S., A primer on handlebody groups, (Handbook of Group Actions. V. Handbook of Group Actions. V, Adv. Lect. Math. (ALM), vol. 48, 2020, Int. Press: Int. Press Somerville, MA), 143-177 ·Zbl 1529.20073
[22]Hausel, T.; Letellier, E.; Rodriguez-Villegas, F., Arithmetic harmonic analysis on character and quiver varieties II, Adv. Math., 234, 85-128, 2013 ·Zbl 1273.14101
[23]Heusener, M.; Porti, J., The variety of characters in \(\operatorname{PSL}_2(\mathbb{C})\), Bol. Soc. Mat. Mexicana (3), 10, 221-237, 2004 ·Zbl 1100.57014
[24]Kauffman, L., State models and the Jones polynomial, Topology, 26, 3, 395-407, 1987 ·Zbl 0622.57004
[25]Karuo, H.; Korinman, J., Azumaya loci of skein algebras, 2022
[26]Lawton, S., Poisson geometry of \(\operatorname{SL}(3, \mathbb{C})\)-character varieties relative to a surface with boundary, Trans. Am. Math. Soc., 361, 5, 2397-2429, 2009 ·Zbl 1171.53052
[27]Lê, T. T.Q., On Kauffman bracket skein modules at roots of unity, Algebraic Geom. Topol., 15, 2, 1093-1117, 2015 ·Zbl 1315.57027
[28]Lê, T. T.Q., Triangular decomposition of skein algebras, Quantum Topol., 9, 3, 591-632, 2018 ·Zbl 1427.57011
[29]Lê, T. T.Q., Quantum Teichmüller spaces and quantum trace map, J. Inst. Math. Jussieu, 18, 2, 249-291, 2019 ·Zbl 1419.57036
[30]Letellier, E., Character varieties with Zariski closures of \(G L_n\)-conjugacy classes at punctures, Sel. Math. New Ser., 21, 1, 293-344, 2015 ·Zbl 1400.14122
[31]Lê, T. T.Q.; Paprocki, J., On Kauffman bracket skein modules of marked 3-manifolds and the Chebyshev-Frobenius homomorphism, Algebraic Geom. Topol., 19, 7, 3453-3509, 2019 ·Zbl 1440.57019
[32]Luo, F.; Stong, R., Dehn-Thurston coordinates for curves on surfaces, Commun. Anal. Geom., 12, 1-2, 1-41, 2004 ·Zbl 1072.57012
[33]Le, T. T.Q.; Yu, T., Quantum traces and embeddings of stated skein algebras into quantum tori, Sel. Math. New Ser., 28, 4, Article 66 pp., 2022, 48 pp. ·Zbl 1503.57015
[34]Marché, J., The Kauffman skein algebra of a surface at \(\sqrt{ - 1} \), Math. Ann., 351, 2, 347-364, 2011 ·Zbl 1228.57014
[35]McConnell, J. C.; Robson, J. C., Noncommutative Noetherian Rings, Graduate Studies in Mathematics, vol. 30, 2001, American Mathematical Society: American Mathematical Society Providence, RI, With the cooperation of L.W. Small ·Zbl 0980.16019
[36]Muller, G., Skein and cluster algebras of marked surfaces, Quantum Topol., 7, 3, 435-503, 2016 ·Zbl 1375.13038
[37]Przytycki, J. H., Skein modules of 3-manifolds, Bull. Pol. Acad. Sci., Math., 39, 1-2, 91-100, 1991 ·Zbl 0762.57013
[38]Przytycki, J. H.; Sikora, A. S., On skein algebras and \(\operatorname{Sl}_2(\mathbf{C})\)-character varieties, Topology, 39, 1, 115-148, 2000 ·Zbl 0958.57011
[39]Przytycki, J. H.; Sikora, A. S., Skein algebras of surfaces, Trans. Am. Math. Soc., 371, 2, 1309-1332, 2019 ·Zbl 1464.57028
[40]Turaev, V. G., The Conway and Kauffman modules of a solid torus, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 167, Issled. Topol. 6, 79-89, 1988, 190 ·Zbl 0673.57004
[41]Weinstein, A., The local structure of Poisson manifolds, J. Differ. Geom., 18, 3, 523-557, 1983 ·Zbl 0524.58011
[42]Whang, J. P., Global geometry on moduli of local systems for surfaces with boundary, Compos. Math., 156, 8, 1517-1559, 2020 ·Zbl 1446.14004
[43]Whang, J. P., Nonlinear descent on moduli of local systems, Isr. J. Math., 240, 2, 935-1004, 2020 ·Zbl 1464.14017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp