Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Dual boundary complexes of Betti moduli spaces over the two-sphere with one irregular singularity.(English)Zbl 07972364

Summary: The weak geometric P=W conjecture of L. Katzarkov, A. Noll, P. Pandit, and C. Simpson states that, a smooth Betti moduli space of complex dimension \(d\) over a punctured Riemann surface has the dual boundary complex homotopy equivalent to a sphere of dimension \(d - 1\). Via a microlocal geometric perspective, we verify this conjecture for a class of rank \(n\) wild character varieties over the two-sphere with one puncture, associated with any Stokes Legendrian link defined by an \(n\)-strand positive braid.

MSC:

14F45 Topological properties in algebraic geometry
53Dxx Symplectic geometry, contact geometry
14Dxx Families, fibrations in algebraic geometry
34Mxx Ordinary differential equations in the complex domain

Cite

References:

[1]Alper, J.; Halpern-Leistner, D.; Heinloth, J., Existence of moduli spaces for algebraic stacks, Invent. Math., 234, 949-1038, 2023; Alper, J.; Halpern-Leistner, D.; Heinloth, J., Existence of moduli spaces for algebraic stacks, Invent. Math., 234, 949-1038, 2023 ·Zbl 1541.14018
[2]Alper, J., Good moduli spaces for Artin stacks, Ann. Inst. Fourier, 63, 2349-2402, 2013; Alper, J., Good moduli spaces for Artin stacks, Ann. Inst. Fourier, 63, 2349-2402, 2013 ·Zbl 1314.14095
[3]Biquard, O.; Boalch, P., Wild non-abelian Hodge theory on curves, Compos. Math., 140, 179-204, 2004; Biquard, O.; Boalch, P., Wild non-abelian Hodge theory on curves, Compos. Math., 140, 179-204, 2004 ·Zbl 1051.53019
[4]Boalch, P.; Douçot, J.; Rembado, G., Twisted local wild mapping class groups: configuration spaces, fission trees and complex braids; Boalch, P.; Douçot, J.; Rembado, G., Twisted local wild mapping class groups: configuration spaces, fission trees and complex braids
[5]Boalch, P., Symplectic manifolds and isomonodromic deformations, Adv. Math., 163, 137-205, 2001; Boalch, P., Symplectic manifolds and isomonodromic deformations, Adv. Math., 163, 137-205, 2001 ·Zbl 1001.53059
[6]Boalch, P., Quasi-Hamiltonian geometry of meromorphic connections, Duke Math. J., 139, 369-405, 2007; Boalch, P., Quasi-Hamiltonian geometry of meromorphic connections, Duke Math. J., 139, 369-405, 2007 ·Zbl 1126.53055
[7]Boalch, P., Through the analytic halo: fission via irregular singularities, Ann. Inst. Fourier, 59, 2669-2684, 2009; Boalch, P., Through the analytic halo: fission via irregular singularities, Ann. Inst. Fourier, 59, 2669-2684, 2009 ·Zbl 1206.53086
[8]Boalch, P., Geometry and braiding of Stokes data; fission and wild character varieties, Ann. Math., 301-365, 2014; Boalch, P., Geometry and braiding of Stokes data; fission and wild character varieties, Ann. Math., 301-365, 2014 ·Zbl 1283.53075
[9]Boalch, P., Wild character varieties, points on the Riemann sphere and Calabi’s examples; Boalch, P., Wild character varieties, points on the Riemann sphere and Calabi’s examples ·Zbl 1409.53068
[10]Boalch, P., Topology of the Stokes phenomenon, Proc. Symp. Pure Math., 103, 2021; Boalch, P., Topology of the Stokes phenomenon, Proc. Symp. Pure Math., 103, 2021 ·Zbl 1471.32016
[11]Boalch, P.; Yamakawa, D., Twisted wild character varieties; Boalch, P.; Yamakawa, D., Twisted wild character varieties
[12]Casals, R.; Gorsky, E.; Gorsky, M.; Simental, J., Algebraic weaves and braid varieties; Casals, R.; Gorsky, E.; Gorsky, M.; Simental, J., Algebraic weaves and braid varieties ·Zbl 07958212
[13]Chekanov, Y., Differential algebra of Legendrian links, Invent. Math., 150, 441-483, 2002; Chekanov, Y., Differential algebra of Legendrian links, Invent. Math., 150, 441-483, 2002 ·Zbl 1029.57011
[14]Corlette, K., Flat G-bundles with canonical metrics, J. Differ. Geom., 28, 361-382, 1988; Corlette, K., Flat G-bundles with canonical metrics, J. Differ. Geom., 28, 361-382, 1988 ·Zbl 0676.58007
[15]Danilov, V. I., Polyhedra of schemes and algebraic varieties, Math. USSR Sb., 26, 137, 1975; Danilov, V. I., Polyhedra of schemes and algebraic varieties, Math. USSR Sb., 26, 137, 1975 ·Zbl 0334.14008
[16]Davison, B., Nonabelian Hodge theory for stacks and a stacky P = W conjecture, Adv. Math., 415, Article 108889 pp., 2023; Davison, B., Nonabelian Hodge theory for stacks and a stacky P = W conjecture, Adv. Math., 415, Article 108889 pp., 2023 ·Zbl 1516.14026
[17]de Cataldo, M.; Hausel, T.; Migliorini, L., Topology of Hitchin systems and Hodge theory of character varieties: the case A1, Ann. Math., 1329-1407, 2012; de Cataldo, M.; Hausel, T.; Migliorini, L., Topology of Hitchin systems and Hodge theory of character varieties: the case A1, Ann. Math., 1329-1407, 2012 ·Zbl 1375.14047
[18]de Cataldo, M.; Maulik, D., The perverse filtration for the Hitchin fibration is locally constant, Pure Appl. Math. Q., 16, 1444-1464, 2020; de Cataldo, M.; Maulik, D., The perverse filtration for the Hitchin fibration is locally constant, Pure Appl. Math. Q., 16, 1444-1464, 2020 ·Zbl 1469.14018
[19]de Cataldo, M.; Maulik, D.; Shen, J., Hitchin fibrations, abelian surfaces, and the P = W conjecture, J. Am. Math. Soc., 35, 911-953, 2022; de Cataldo, M.; Maulik, D.; Shen, J., Hitchin fibrations, abelian surfaces, and the P = W conjecture, J. Am. Math. Soc., 35, 911-953, 2022 ·Zbl 1523.14061
[20]Dancso, Z.; McBreen, M.; Shende, V., Deletion-contraction triangles for Hausel-Proudfoot varieties, J. Eur. Math. Soc., 26, 2565-2653, 2024; Dancso, Z.; McBreen, M.; Shende, V., Deletion-contraction triangles for Hausel-Proudfoot varieties, J. Eur. Math. Soc., 26, 2565-2653, 2024 ·Zbl 07875318
[21]Eliashberg, Y., Invariants in contact topology, Proc. Conf. Math. Sci., 2, 327-338, 1998; Eliashberg, Y., Invariants in contact topology, Proc. Conf. Math. Sci., 2, 327-338, 1998 ·Zbl 0913.53010
[22]Etnyre, J. B.; Ng, L. L.; Sabloff, J. M., Invariants of Legendrian knots and coherent orientations, J. Symplectic Geom., 1, 321-367, 2001; Etnyre, J. B.; Ng, L. L.; Sabloff, J. M., Invariants of Legendrian knots and coherent orientations, J. Symplectic Geom., 1, 321-367, 2001 ·Zbl 1024.57014
[23]Fabry, E., Sur les intégrals des équations différentielles linéaires a coefficients rationnels, 1885, Paris Thesis (link to pdf); Fabry, E., Sur les intégrals des équations différentielles linéaires a coefficients rationnels, 1885, Paris Thesis (link to pdf)
[24]Farajzadeh-Tehrani, M.; Frohman, C., On compactifications of the SL (2, C) character varieties of punctured surfaces; Farajzadeh-Tehrani, M.; Frohman, C., On compactifications of the SL (2, C) character varieties of punctured surfaces
[25]Felisetti, C.; Mauri, M., P = W conjectures for character varieties with symplectic resolution, J. Éc. Polytech. Math., 9, 853-905, 2022; Felisetti, C.; Mauri, M., P = W conjectures for character varieties with symplectic resolution, J. Éc. Polytech. Math., 9, 853-905, 2022 ·Zbl 1499.14087
[26]Gorsky, E.; Kivinen, O.; Simental, J., Algebra and geometry of link homology: lecture notes from the IHES 2021 Summer School, Bull. Lond. Math. Soc., 55, 537-591, 2022; Gorsky, E.; Kivinen, O.; Simental, J., Algebra and geometry of link homology: lecture notes from the IHES 2021 Summer School, Bull. Lond. Math. Soc., 55, 537-591, 2022 ·Zbl 1529.14001
[27]Huang, P.; Kydonakis, G.; Sun, H.; Zhao, L., Tame parahoric nonabelian Hodge correspondence on curves; Huang, P.; Kydonakis, G.; Sun, H.; Zhao, L., Tame parahoric nonabelian Hodge correspondence on curves
[28]Hausel, T.; Letellier, E.; Rodriguez-Villegas, F., Arithmetic harmonic analysis on character and quiver varieties, Duke Math. J., 160, 323-400, 2011; Hausel, T.; Letellier, E.; Rodriguez-Villegas, F., Arithmetic harmonic analysis on character and quiver varieties, Duke Math. J., 160, 323-400, 2011 ·Zbl 1246.14063
[29]Hausel, T.; Mellit, A.; Minets, A.; Schiffmann, O., \(P = W\) via \(H_2\); Hausel, T.; Mellit, A.; Minets, A.; Schiffmann, O., \(P = W\) via \(H_2\)
[30]Henry, M.; Rutherford, D., Ruling polynomials and augmentations over finite fields, J. Topol., 8, 1-37, 2015; Henry, M.; Rutherford, D., Ruling polynomials and augmentations over finite fields, J. Topol., 8, 1-37, 2015 ·Zbl 1312.57033
[31]Huang, P.; Sun, H., Meromorphic parahoric Higgs torsors and filtered Stokes G-local systems on curves; Huang, P.; Sun, H., Meromorphic parahoric Higgs torsors and filtered Stokes G-local systems on curves ·Zbl 1521.14065
[32]Kashiwara, M., Riemann-Hilbert correspondence for irregular holonomic D-modules, Jpn. J. Math., 11, 113-149, 2016; Kashiwara, M., Riemann-Hilbert correspondence for irregular holonomic D-modules, Jpn. J. Math., 11, 113-149, 2016 ·Zbl 1351.32001
[33]Katzarkov, L.; Kontsevich, M.; Pantev, T., Hodge theoretic aspects of mirror symmetry; Katzarkov, L.; Kontsevich, M.; Pantev, T., Hodge theoretic aspects of mirror symmetry ·Zbl 1206.14009
[34]Katzarkov, L.; Noll, A.; Pandit, P.; Simpson, C., Harmonic maps to buildings and singular perturbation theory, Commun. Math. Phys., 336, 853-903, 2015; Katzarkov, L.; Noll, A.; Pandit, P.; Simpson, C., Harmonic maps to buildings and singular perturbation theory, Commun. Math. Phys., 336, 853-903, 2015 ·Zbl 1314.32021
[35]Komyo, A., On compactifications of character varieties of n-punctured projective line, Ann. Inst. Fourier, 65, 1493-1523, 2015; Komyo, A., On compactifications of character varieties of n-punctured projective line, Ann. Inst. Fourier, 65, 1493-1523, 2015 ·Zbl 1378.14045
[36]Konno, H., Construction of the moduli space of stable parabolic Higgs bundles on a Riemann surface, J. Math. Soc. Jpn., 45, 253-276, 1993; Konno, H., Construction of the moduli space of stable parabolic Higgs bundles on a Riemann surface, J. Math. Soc. Jpn., 45, 253-276, 1993 ·Zbl 0787.53022
[37]Kashiwara, M.; Schapira, P., Sheaves on manifolds, Springer Sci., 292, 2013; Kashiwara, M.; Schapira, P., Sheaves on manifolds, Springer Sci., 292, 2013
[38]Kollár, J.; Xu, C., The dual complex of Calabi-Yau pairs, Invent. Math., 205, 527-557, 2016; Kollár, J.; Xu, C., The dual complex of Calabi-Yau pairs, Invent. Math., 205, 527-557, 2016 ·Zbl 1360.14056
[39]Levelt, A. H.M., Jordan decomposition for a class of singular differential operators, Ark. Mat., 13, 1-27, 1975; Levelt, A. H.M., Jordan decomposition for a class of singular differential operators, Ark. Mat., 13, 1-27, 1975 ·Zbl 0305.34008
[40]Malgrange, B., La classification des connexions irrégulières à une variable, Cours Inst. Fourier, 17, 1-19, 1982; Malgrange, B., La classification des connexions irrégulières à une variable, Cours Inst. Fourier, 17, 1-19, 1982
[41]Mauri, M., Intersection cohomology of rank 2 character varieties of surface groups, J. Inst. Math. Jussieu, 1-40, 2021; Mauri, M., Intersection cohomology of rank 2 character varieties of surface groups, J. Inst. Math. Jussieu, 1-40, 2021
[42]Mellit, A., Cell decompositions of character varieties; Mellit, A., Cell decompositions of character varieties
[43]Mauri, M.; Mazzon, E.; Stevenson, M., On the geometric P = W conjecture, Sel. Math. New Ser., 28, 2022; Mauri, M.; Mazzon, E.; Stevenson, M., On the geometric P = W conjecture, Sel. Math. New Ser., 28, 2022 ·Zbl 1496.14033
[44]Mochizuki, T., Wild harmonic bundles and wild pure twistor D-modules, Astérisque, 2011; Mochizuki, T., Wild harmonic bundles and wild pure twistor D-modules, Astérisque, 2011 ·Zbl 1245.32001
[45]Mochizuki, T., Good wild harmonic bundles and good filtered Higgs bundles, SIGMA, 17, Article 068 pp., 2021; Mochizuki, T., Good wild harmonic bundles and good filtered Higgs bundles, SIGMA, 17, Article 068 pp., 2021 ·Zbl 1489.53032
[46]Maulik, D.; Shen, J., The \(P = W\) conjecture for \(G L_n\); Maulik, D.; Shen, J., The \(P = W\) conjecture for \(G L_n\)
[47]Maulik, D.; Shen, J.; Yin, Q., Perverse filtrations and Fourier transforms; Maulik, D.; Shen, J.; Yin, Q., Perverse filtrations and Fourier transforms
[48]Nakajima, H., Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Riemann surfaces, (Moduli of Vector Bundles, 1996), 199-208; Nakajima, H., Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Riemann surfaces, (Moduli of Vector Bundles, 1996), 199-208 ·Zbl 0881.14006
[49]Ng, L. L., Computable Legendrian invariants, J. Topol., 42, 55-82, 2003; Ng, L. L., Computable Legendrian invariants, J. Topol., 42, 55-82, 2003 ·Zbl 1032.53070
[50]Ng, L.; Rutherford, D.; Shende, V.; Sivek, S.; Zaslow, E., Augmentations are sheaves, Geom. Topol., 24, 2149-2228, 2020; Ng, L.; Rutherford, D.; Shende, V.; Sivek, S.; Zaslow, E., Augmentations are sheaves, Geom. Topol., 24, 2149-2228, 2020 ·Zbl 1457.53064
[51]Némethi, A.; Szabó, S., The geometric P = W conjecture in the Painlevé cases via plumbing calculus, Int. Math. Res. Not., 2022, 3201-3218, 2022; Némethi, A.; Szabó, S., The geometric P = W conjecture in the Painlevé cases via plumbing calculus, Int. Math. Res. Not., 2022, 3201-3218, 2022 ·Zbl 1484.14074
[52]Payne, S., Boundary complexes and weight filtrations, Mich. Math. J., 62, 293-322, 2013; Payne, S., Boundary complexes and weight filtrations, Mich. Math. J., 62, 293-322, 2013 ·Zbl 1312.14049
[53]Sabbah, C., Déformations isomonodromiques et variétés de Frobenius, 2002, EDP Sciences; Sabbah, C., Déformations isomonodromiques et variétés de Frobenius, 2002, EDP Sciences ·Zbl 1101.14001
[54]Simpson, C. T., Harmonic bundles on noncompact curves, J. Am. Math. Soc., 3, 713-770, 1990; Simpson, C. T., Harmonic bundles on noncompact curves, J. Am. Math. Soc., 3, 713-770, 1990 ·Zbl 0713.58012
[55]Simpson, C. T., Higgs bundles and local systems, Publ. Math. IHES, 75, 5-95, 1992; Simpson, C. T., Higgs bundles and local systems, Publ. Math. IHES, 75, 5-95, 1992 ·Zbl 0814.32003
[56]Simpson, C. T., Moduli of representations of the fundamental group of a smooth projective variety II, Publ. Math. IHES, 80, 5-79, 1995; Simpson, C. T., Moduli of representations of the fundamental group of a smooth projective variety II, Publ. Math. IHES, 80, 5-79, 1995 ·Zbl 0891.14006
[57]Simpson, C. T., The dual boundary complex of the \(S L_2\) character variety of a punctured sphere, Ann. Fac. Sci. Toulouse, 25, 317-361, 2016; Simpson, C. T., The dual boundary complex of the \(S L_2\) character variety of a punctured sphere, Ann. Fac. Sci. Toulouse, 25, 317-361, 2016 ·Zbl 1352.14009
[58]Stokes, G. G., On the discontinuity of arbitrary constants which appear in divergent developments, Camb. Philos. Trans. X, 1, 105-128, 1857; Stokes, G. G., On the discontinuity of arbitrary constants which appear in divergent developments, Camb. Philos. Trans. X, 1, 105-128, 1857
[59]Shende, V.; Treumann, D.; Williams, H.; Zaslow, E., Cluster varieties from Legendrian knots, Duke Math. J., 168, 2801-2871, 2019; Shende, V.; Treumann, D.; Williams, H.; Zaslow, E., Cluster varieties from Legendrian knots, Duke Math. J., 168, 2801-2871, 2019 ·Zbl 1475.53094
[60]Shende, V.; Treumann, D.; Zaslow, E., Legendrian knots and constructible sheaves, Invent. Math., 207, 1031-1133, 2017; Shende, V.; Treumann, D.; Zaslow, E., Legendrian knots and constructible sheaves, Invent. Math., 207, 1031-1133, 2017 ·Zbl 1369.57016
[61]Su, T., Cell decomposition and dual boundary complexes of character varieties; Su, T., Cell decomposition and dual boundary complexes of character varieties
[62]Su, T., Integral cohomology of dual boundary complexes is motivic; Su, T., Integral cohomology of dual boundary complexes is motivic
[63]Szabo, S., Simpson’s geometric P = W conjecture in the Painlevé VI case via abelianization; Szabo, S., Simpson’s geometric P = W conjecture in the Painlevé VI case via abelianization
[64]Szabo, S., Perversity equals weight for Painlevé spaces, Adv. Math., 383, Article 107667 pp., 2021; Szabo, S., Perversity equals weight for Painlevé spaces, Adv. Math., 383, Article 107667 pp., 2021 ·Zbl 1470.14068
[65]Toën, B.; Vaquié, M., Moduli of objects in dg-categories, Ann. Inst. Fourier, 40, 387-444, 2007; Toën, B.; Vaquié, M., Moduli of objects in dg-categories, Ann. Inst. Fourier, 40, 387-444, 2007 ·Zbl 1140.18005
[66]Van der Put, M.; Singer, M. F., Galois Theory of Linear Differential Equations, vol. 328, 2012, Springer; Van der Put, M.; Singer, M. F., Galois Theory of Linear Differential Equations, vol. 328, 2012, Springer
[67]Wasow, W., Asymptotic Expansions for Ordinary Differential Equations, 2018, Courier Dover Publications; Wasow, W., Asymptotic Expansions for Ordinary Differential Equations, 2018, Courier Dover Publications ·Zbl 0169.10903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp