Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Bosonization of Feigin-Odesskii Poisson varieties.(English)Zbl 07972359

Summary: The derived moduli stack of complexes of vector bundles on a Gorenstein Calabi-Yau curve admits a 0-shifted Poisson structure. Projective spaces with Feigin-Odesskii Poisson brackets are examples of such moduli spaces over complex elliptic curves [A. V. Odesskiĭ andB. L. Feigin, Funct. Anal. Appl. 23, No. 3, 207–214 (1989;Zbl 0713.17009); Transl. Math. Monogr. 185, 65–84 (1998;Zbl 0916.16014)]. By generalizing several results in our previous work [Adv. Math. 338, 991–1037 (2018;Zbl 1400.53070); Sel. Math., New Ser. 25, No. 3, Paper No. 42, 45 p. (2019;Zbl 1412.14008); J. Topol. 16, No. 4, 1389–1422 (2023;Zbl 1529.14004)], we construct a collection of auxiliary Poisson varieties equipped with Poisson morphisms to Feigin-Odesskii varieties. We call thembosonizations of Feigin-Odesskii varieties. These spaces appear as special cases of the moduli spaces ofchains, which we introduce. We show that the moduli space of chains admits a shifted Poisson structure when the base is a Calabi-Yau variety of an arbitrary dimension. Using bosonization spaces mapping to the zero loci of the Feigin-Odesskii varieties, we show that the Feigin-Odesskii Poisson brackets on projective spaces (associated with stable bundles of arbitrary rank on elliptic curves) admit no infinitesimal symmetries. We also derive explicit formulas for the Poisson brackets on the bosonizations of the Feigin-Odesskii varieties associated with line bundles in a simplest nontrivial case.

MSC:

14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
16E10 Homological dimension in associative algebras
16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)
16T05 Hopf algebras and their applications
53D17 Poisson manifolds; Poisson groupoids and algebroids
53D55 Deformation quantization, star products
81S10 Geometry and quantization, symplectic methods

Cite

References:

[1]Alper, J., Good moduli spaces for Artin stacks, Ann. Inst. Fourier, 63, 6, 2349-2402, 2013; Alper, J., Good moduli spaces for Artin stacks, Ann. Inst. Fourier, 63, 6, 2349-2402, 2013 ·Zbl 1314.14095
[2]Ballard, M. R., Derived categories of sheaves on singular schemes with an application to reconstruction, Adv. Math., 227, 2, 895-919, 2011; Ballard, M. R., Derived categories of sheaves on singular schemes with an application to reconstruction, Adv. Math., 227, 2, 895-919, 2011 ·Zbl 1213.14031
[3]Calaque, D., Lagrangian structures on mapping stacks and semi-classical TFTs, (Stacks and Categories in Geometry, Topology, and Algebra, vol. 643, 2015), 1-23, 87 (1968) 305-320; Calaque, D., Lagrangian structures on mapping stacks and semi-classical TFTs, (Stacks and Categories in Geometry, Topology, and Algebra, vol. 643, 2015), 1-23, 87 (1968) 305-320 ·Zbl 1349.14005
[4]Chirvasitu, A.; Kanda, R.; Smith, S. Paul, The symplectic leaves for the elliptic Poisson bracket on projective space defined by Feigin-Odesskii and Polishchuk, 2022, preprint; Chirvasitu, A.; Kanda, R.; Smith, S. Paul, The symplectic leaves for the elliptic Poisson bracket on projective space defined by Feigin-Odesskii and Polishchuk, 2022, preprint
[5]Calaque, D.; Pantev, T.; Toen, B.; Vaquié, M.; Vezzosi, G., Shifted Poisson structures and deformation quantization, J. Topol., 10, 2, 483-584, 2017; Calaque, D.; Pantev, T.; Toen, B.; Vaquié, M.; Vezzosi, G., Shifted Poisson structures and deformation quantization, J. Topol., 10, 2, 483-584, 2017 ·Zbl 1428.14006
[6]Feigin, B. L.; Odesskii, A. V., Sklyanin’s elliptic algebras, Funct. Anal. Appl., 23, 3, 207-214, 1989; Feigin, B. L.; Odesskii, A. V., Sklyanin’s elliptic algebras, Funct. Anal. Appl., 23, 3, 207-214, 1989 ·Zbl 0713.17009
[7]Feigin, B. L.; Odesskii, A. V., Vector bundles on an elliptic curve and Sklyanin algebras, (Topics in Quantum Groups and Finite-Type Invariants, 1998, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 65-84; Feigin, B. L.; Odesskii, A. V., Vector bundles on an elliptic curve and Sklyanin algebras, (Topics in Quantum Groups and Finite-Type Invariants, 1998, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 65-84 ·Zbl 0916.16014
[8]García-Prada, O.; Heinloth, J.; Schmitt, A. H., On the motives of moduli of chains and Higgs bundles, J. Eur. Math. Soc., 16, 12, 2617-2668, 2014; García-Prada, O.; Heinloth, J.; Schmitt, A. H., On the motives of moduli of chains and Higgs bundles, J. Eur. Math. Soc., 16, 12, 2617-2668, 2014 ·Zbl 1316.14060
[9]Toen, B.; Vezzosi, G., Homotopical algebraic geometry II: geometric stacks and applications, Mem. Am. Math. Soc., 193, 902, 2008; Toen, B.; Vezzosi, G., Homotopical algebraic geometry II: geometric stacks and applications, Mem. Am. Math. Soc., 193, 902, 2008 ·Zbl 1145.14003
[10]Hua, Z.; Polishchuk, A., Shifted Poisson structures and moduli spaces of complexes, Adv. Math., 338, 991-1037, 2018; Hua, Z.; Polishchuk, A., Shifted Poisson structures and moduli spaces of complexes, Adv. Math., 338, 991-1037, 2018 ·Zbl 1400.53070
[11]Hua, Z.; Polishchuk, A., Shifted Poisson geometry and meromorphic matrix algebras over an elliptic curve, Sel. Math., 25, 3, Article 42 pp., 2019; Hua, Z.; Polishchuk, A., Shifted Poisson geometry and meromorphic matrix algebras over an elliptic curve, Sel. Math., 25, 3, Article 42 pp., 2019 ·Zbl 1412.14008
[12]Hua, Z.; Polishchuk, A., Elliptic bihamiltonian structures from relative shifted Poisson structures, 2020, preprint; Hua, Z.; Polishchuk, A., Elliptic bihamiltonian structures from relative shifted Poisson structures, 2020, preprint
[13]Hua, Z.; Polishchuk, A., Feigin-Odesskii brackets associated with Kodaira cycles and positroid varieties, 2024, preprint; Hua, Z.; Polishchuk, A., Feigin-Odesskii brackets associated with Kodaira cycles and positroid varieties, 2024, preprint
[14]Halpern-Leistner, D.; Preygel, A., Mapping stacks and categorical notions of properness, 2014, preprint; Halpern-Leistner, D.; Preygel, A., Mapping stacks and categorical notions of properness, 2014, preprint ·Zbl 1521.14003
[15]Inaba, M., Toward a definition of moduli of complexes of coherent sheaves on a projective scheme, J. Math. Kyoto Univ., 42, 2, 317-329, 2002; Inaba, M., Toward a definition of moduli of complexes of coherent sheaves on a projective scheme, J. Math. Kyoto Univ., 42, 2, 317-329, 2002 ·Zbl 1063.14013
[16]Lurie, J., Derived algebraic geometry, 2004, Massachusetts Institute of Technology, PhD diss.; Lurie, J., Derived algebraic geometry, 2004, Massachusetts Institute of Technology, PhD diss.
[17]Melani, V.; Safronov, P., Derived coisotropic structures II: stacks and quantization, Sel. Math., 24, 4, 3119-3173, 2018; Melani, V.; Safronov, P., Derived coisotropic structures II: stacks and quantization, Sel. Math., 24, 4, 3119-3173, 2018 ·Zbl 1440.14004
[18]Nevins, T. A.; Stafford, J. T., Sklyanin algebras and Hilbert schemes of points, Adv. Math., 210, 2, 405-478, 2007; Nevins, T. A.; Stafford, J. T., Sklyanin algebras and Hilbert schemes of points, Adv. Math., 210, 2, 405-478, 2007 ·Zbl 1116.14003
[19]Odesskii, A. Vladimirovich, Elliptic algebras, Russ. Math. Surv., 57, 6, 1127, 2002; Odesskii, A. Vladimirovich, Elliptic algebras, Russ. Math. Surv., 57, 6, 1127, 2002 ·Zbl 1062.16035
[20]Lunts, V.; Orlov, D., Uniqueness of enhancement for triangulated categories, J. Am. Math. Soc., 23, 3, 853-908, 2010; Lunts, V.; Orlov, D., Uniqueness of enhancement for triangulated categories, J. Am. Math. Soc., 23, 3, 853-908, 2010 ·Zbl 1197.14014
[21]Tagne Pelap, S. R., Poisson (co)homology of polynomial Poisson algebras in dimension four: Sklyanin’s case, J. Algebra, 322, 1151-1169, 2009; Tagne Pelap, S. R., Poisson (co)homology of polynomial Poisson algebras in dimension four: Sklyanin’s case, J. Algebra, 322, 1151-1169, 2009 ·Zbl 1173.53332
[22]Pichereau, A., Poisson (co) homology and isolated singularities, J. Algebra, 299, 2, 747-777, 2006; Pichereau, A., Poisson (co) homology and isolated singularities, J. Algebra, 299, 2, 747-777, 2006 ·Zbl 1113.17009
[23]Pantev, T.; Toën, B.; Vaquié, M.; Vezzosi, G., Shifted symplectic structures, Publ. Math. IHES, 117, 1, 271-328, 2013; Pantev, T.; Toën, B.; Vaquié, M.; Vezzosi, G., Shifted symplectic structures, Publ. Math. IHES, 117, 1, 271-328, 2013 ·Zbl 1328.14027
[24]Pym, B.; Schedler, T., Holonomic Poisson manifolds and deformations of elliptic algebras, (Geometry and Physics, vol. II, 2018, Oxford Univ. Press: Oxford Univ. Press Oxford), 681-703; Pym, B.; Schedler, T., Holonomic Poisson manifolds and deformations of elliptic algebras, (Geometry and Physics, vol. II, 2018, Oxford Univ. Press: Oxford Univ. Press Oxford), 681-703 ·Zbl 1431.53090
[25]Polishchuk, A., Algebraic geometry of Poisson brackets, J. Math. Sci. (N.Y.), 84, 5, 1413-1444, 1997; Polishchuk, A., Algebraic geometry of Poisson brackets, J. Math. Sci. (N.Y.), 84, 5, 1413-1444, 1997 ·Zbl 0995.37057
[26]Polishchuk, A., Poisson structures and birational morphisms associated with bundles on elliptic curves, Int. Math. Res. Not., 13, 683-703, 1998; Polishchuk, A., Poisson structures and birational morphisms associated with bundles on elliptic curves, Int. Math. Res. Not., 13, 683-703, 1998 ·Zbl 0933.14016
[27]Polishchuk, A., Abelian Varieties, Theta Functions and the Fourier Transform, 2003, Cambridge University Press: Cambridge University Press Cambridge; Polishchuk, A., Abelian Varieties, Theta Functions and the Fourier Transform, 2003, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1018.14016
[28]Tate, J.; Van den Bergh, M., Homological properties of Sklyanin algebras, Invent. Math., 124, 1, 619-648, 1996; Tate, J.; Van den Bergh, M., Homological properties of Sklyanin algebras, Invent. Math., 124, 1, 619-648, 1996 ·Zbl 0876.17010
[29]Toën, B.; Vaquié, M., Moduli of objects in dg-categories, Ann. Sci. ENS, 40, 387-444, 2007; Toën, B.; Vaquié, M., Moduli of objects in dg-categories, Ann. Sci. ENS, 40, 387-444, 2007 ·Zbl 1140.18005
[30]Van den Bergh, M., Noncommutative homology of some three-dimensional quantum spaces, K-Theory, 8, 3, 213-230, 1994; Van den Bergh, M., Noncommutative homology of some three-dimensional quantum spaces, K-Theory, 8, 3, 213-230, 1994 ·Zbl 0814.16006
[31]Weibel, C., The Hodge filtration and cyclic homology, K-Theory, 12, 2, 145-164, 1997; Weibel, C., The Hodge filtration and cyclic homology, K-Theory, 12, 2, 145-164, 1997 ·Zbl 0881.19002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp