[1] | Alper, J., Good moduli spaces for Artin stacks, Ann. Inst. Fourier, 63, 6, 2349-2402, 2013; Alper, J., Good moduli spaces for Artin stacks, Ann. Inst. Fourier, 63, 6, 2349-2402, 2013 ·Zbl 1314.14095 |
[2] | Ballard, M. R., Derived categories of sheaves on singular schemes with an application to reconstruction, Adv. Math., 227, 2, 895-919, 2011; Ballard, M. R., Derived categories of sheaves on singular schemes with an application to reconstruction, Adv. Math., 227, 2, 895-919, 2011 ·Zbl 1213.14031 |
[3] | Calaque, D., Lagrangian structures on mapping stacks and semi-classical TFTs, (Stacks and Categories in Geometry, Topology, and Algebra, vol. 643, 2015), 1-23, 87 (1968) 305-320; Calaque, D., Lagrangian structures on mapping stacks and semi-classical TFTs, (Stacks and Categories in Geometry, Topology, and Algebra, vol. 643, 2015), 1-23, 87 (1968) 305-320 ·Zbl 1349.14005 |
[4] | Chirvasitu, A.; Kanda, R.; Smith, S. Paul, The symplectic leaves for the elliptic Poisson bracket on projective space defined by Feigin-Odesskii and Polishchuk, 2022, preprint; Chirvasitu, A.; Kanda, R.; Smith, S. Paul, The symplectic leaves for the elliptic Poisson bracket on projective space defined by Feigin-Odesskii and Polishchuk, 2022, preprint |
[5] | Calaque, D.; Pantev, T.; Toen, B.; Vaquié, M.; Vezzosi, G., Shifted Poisson structures and deformation quantization, J. Topol., 10, 2, 483-584, 2017; Calaque, D.; Pantev, T.; Toen, B.; Vaquié, M.; Vezzosi, G., Shifted Poisson structures and deformation quantization, J. Topol., 10, 2, 483-584, 2017 ·Zbl 1428.14006 |
[6] | Feigin, B. L.; Odesskii, A. V., Sklyanin’s elliptic algebras, Funct. Anal. Appl., 23, 3, 207-214, 1989; Feigin, B. L.; Odesskii, A. V., Sklyanin’s elliptic algebras, Funct. Anal. Appl., 23, 3, 207-214, 1989 ·Zbl 0713.17009 |
[7] | Feigin, B. L.; Odesskii, A. V., Vector bundles on an elliptic curve and Sklyanin algebras, (Topics in Quantum Groups and Finite-Type Invariants, 1998, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 65-84; Feigin, B. L.; Odesskii, A. V., Vector bundles on an elliptic curve and Sklyanin algebras, (Topics in Quantum Groups and Finite-Type Invariants, 1998, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 65-84 ·Zbl 0916.16014 |
[8] | García-Prada, O.; Heinloth, J.; Schmitt, A. H., On the motives of moduli of chains and Higgs bundles, J. Eur. Math. Soc., 16, 12, 2617-2668, 2014; García-Prada, O.; Heinloth, J.; Schmitt, A. H., On the motives of moduli of chains and Higgs bundles, J. Eur. Math. Soc., 16, 12, 2617-2668, 2014 ·Zbl 1316.14060 |
[9] | Toen, B.; Vezzosi, G., Homotopical algebraic geometry II: geometric stacks and applications, Mem. Am. Math. Soc., 193, 902, 2008; Toen, B.; Vezzosi, G., Homotopical algebraic geometry II: geometric stacks and applications, Mem. Am. Math. Soc., 193, 902, 2008 ·Zbl 1145.14003 |
[10] | Hua, Z.; Polishchuk, A., Shifted Poisson structures and moduli spaces of complexes, Adv. Math., 338, 991-1037, 2018; Hua, Z.; Polishchuk, A., Shifted Poisson structures and moduli spaces of complexes, Adv. Math., 338, 991-1037, 2018 ·Zbl 1400.53070 |
[11] | Hua, Z.; Polishchuk, A., Shifted Poisson geometry and meromorphic matrix algebras over an elliptic curve, Sel. Math., 25, 3, Article 42 pp., 2019; Hua, Z.; Polishchuk, A., Shifted Poisson geometry and meromorphic matrix algebras over an elliptic curve, Sel. Math., 25, 3, Article 42 pp., 2019 ·Zbl 1412.14008 |
[12] | Hua, Z.; Polishchuk, A., Elliptic bihamiltonian structures from relative shifted Poisson structures, 2020, preprint; Hua, Z.; Polishchuk, A., Elliptic bihamiltonian structures from relative shifted Poisson structures, 2020, preprint |
[13] | Hua, Z.; Polishchuk, A., Feigin-Odesskii brackets associated with Kodaira cycles and positroid varieties, 2024, preprint; Hua, Z.; Polishchuk, A., Feigin-Odesskii brackets associated with Kodaira cycles and positroid varieties, 2024, preprint |
[14] | Halpern-Leistner, D.; Preygel, A., Mapping stacks and categorical notions of properness, 2014, preprint; Halpern-Leistner, D.; Preygel, A., Mapping stacks and categorical notions of properness, 2014, preprint ·Zbl 1521.14003 |
[15] | Inaba, M., Toward a definition of moduli of complexes of coherent sheaves on a projective scheme, J. Math. Kyoto Univ., 42, 2, 317-329, 2002; Inaba, M., Toward a definition of moduli of complexes of coherent sheaves on a projective scheme, J. Math. Kyoto Univ., 42, 2, 317-329, 2002 ·Zbl 1063.14013 |
[16] | Lurie, J., Derived algebraic geometry, 2004, Massachusetts Institute of Technology, PhD diss.; Lurie, J., Derived algebraic geometry, 2004, Massachusetts Institute of Technology, PhD diss. |
[17] | Melani, V.; Safronov, P., Derived coisotropic structures II: stacks and quantization, Sel. Math., 24, 4, 3119-3173, 2018; Melani, V.; Safronov, P., Derived coisotropic structures II: stacks and quantization, Sel. Math., 24, 4, 3119-3173, 2018 ·Zbl 1440.14004 |
[18] | Nevins, T. A.; Stafford, J. T., Sklyanin algebras and Hilbert schemes of points, Adv. Math., 210, 2, 405-478, 2007; Nevins, T. A.; Stafford, J. T., Sklyanin algebras and Hilbert schemes of points, Adv. Math., 210, 2, 405-478, 2007 ·Zbl 1116.14003 |
[19] | Odesskii, A. Vladimirovich, Elliptic algebras, Russ. Math. Surv., 57, 6, 1127, 2002; Odesskii, A. Vladimirovich, Elliptic algebras, Russ. Math. Surv., 57, 6, 1127, 2002 ·Zbl 1062.16035 |
[20] | Lunts, V.; Orlov, D., Uniqueness of enhancement for triangulated categories, J. Am. Math. Soc., 23, 3, 853-908, 2010; Lunts, V.; Orlov, D., Uniqueness of enhancement for triangulated categories, J. Am. Math. Soc., 23, 3, 853-908, 2010 ·Zbl 1197.14014 |
[21] | Tagne Pelap, S. R., Poisson (co)homology of polynomial Poisson algebras in dimension four: Sklyanin’s case, J. Algebra, 322, 1151-1169, 2009; Tagne Pelap, S. R., Poisson (co)homology of polynomial Poisson algebras in dimension four: Sklyanin’s case, J. Algebra, 322, 1151-1169, 2009 ·Zbl 1173.53332 |
[22] | Pichereau, A., Poisson (co) homology and isolated singularities, J. Algebra, 299, 2, 747-777, 2006; Pichereau, A., Poisson (co) homology and isolated singularities, J. Algebra, 299, 2, 747-777, 2006 ·Zbl 1113.17009 |
[23] | Pantev, T.; Toën, B.; Vaquié, M.; Vezzosi, G., Shifted symplectic structures, Publ. Math. IHES, 117, 1, 271-328, 2013; Pantev, T.; Toën, B.; Vaquié, M.; Vezzosi, G., Shifted symplectic structures, Publ. Math. IHES, 117, 1, 271-328, 2013 ·Zbl 1328.14027 |
[24] | Pym, B.; Schedler, T., Holonomic Poisson manifolds and deformations of elliptic algebras, (Geometry and Physics, vol. II, 2018, Oxford Univ. Press: Oxford Univ. Press Oxford), 681-703; Pym, B.; Schedler, T., Holonomic Poisson manifolds and deformations of elliptic algebras, (Geometry and Physics, vol. II, 2018, Oxford Univ. Press: Oxford Univ. Press Oxford), 681-703 ·Zbl 1431.53090 |
[25] | Polishchuk, A., Algebraic geometry of Poisson brackets, J. Math. Sci. (N.Y.), 84, 5, 1413-1444, 1997; Polishchuk, A., Algebraic geometry of Poisson brackets, J. Math. Sci. (N.Y.), 84, 5, 1413-1444, 1997 ·Zbl 0995.37057 |
[26] | Polishchuk, A., Poisson structures and birational morphisms associated with bundles on elliptic curves, Int. Math. Res. Not., 13, 683-703, 1998; Polishchuk, A., Poisson structures and birational morphisms associated with bundles on elliptic curves, Int. Math. Res. Not., 13, 683-703, 1998 ·Zbl 0933.14016 |
[27] | Polishchuk, A., Abelian Varieties, Theta Functions and the Fourier Transform, 2003, Cambridge University Press: Cambridge University Press Cambridge; Polishchuk, A., Abelian Varieties, Theta Functions and the Fourier Transform, 2003, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1018.14016 |
[28] | Tate, J.; Van den Bergh, M., Homological properties of Sklyanin algebras, Invent. Math., 124, 1, 619-648, 1996; Tate, J.; Van den Bergh, M., Homological properties of Sklyanin algebras, Invent. Math., 124, 1, 619-648, 1996 ·Zbl 0876.17010 |
[29] | Toën, B.; Vaquié, M., Moduli of objects in dg-categories, Ann. Sci. ENS, 40, 387-444, 2007; Toën, B.; Vaquié, M., Moduli of objects in dg-categories, Ann. Sci. ENS, 40, 387-444, 2007 ·Zbl 1140.18005 |
[30] | Van den Bergh, M., Noncommutative homology of some three-dimensional quantum spaces, K-Theory, 8, 3, 213-230, 1994; Van den Bergh, M., Noncommutative homology of some three-dimensional quantum spaces, K-Theory, 8, 3, 213-230, 1994 ·Zbl 0814.16006 |
[31] | Weibel, C., The Hodge filtration and cyclic homology, K-Theory, 12, 2, 145-164, 1997; Weibel, C., The Hodge filtration and cyclic homology, K-Theory, 12, 2, 145-164, 1997 ·Zbl 0881.19002 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.