Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Joyce structures and their twistor spaces.(English)Zbl 07972352

This paper provides a systematic introduction to Joyce structures, a class of geometric structures that arise in connection with holomorphic generating functions for Donaldson-Thomas (DT) invariants. They serve as a nonlinear analogue of Frobenius structures and encode the complex hyper-Kähler geometry via a one-parameter family of flat and symplectic nonlinear connections on the tangent bundle of a complex manifold. The study of these structures has significant implications in areas such as integrable systems, wall-crossing phenomena, and cluster varieties.
A key contribution of this work is a detailed analysis of the twistor space associated with Joyce structures, which provides a geometric framework for studying their properties. The author introduces a novel construction of the twistor space as a leaf space of a foliation on \(P^1 \times X\), where \(X\) is the total space of the tangent bundle of a complex manifold. The paper establishes that the twistor space carries a natural holomorphic symplectic structure parametrized by \(P^1\), and the induced fibration exhibits three distinguished fibers, \(Z_0\), \(Z_1\), and \(Z_{\infty}\), which encode various aspects of the underlying geometry.
Among the main results, the paper proves that a Joyce structure naturally induces a complex hyper-Kähler structure on the total space of the tangent bundle. It also derives explicit formulae for the associated symplectic forms and their behavior under the twistor fibration. Furthermore, the author introduces the Plebański function, a generating function satisfying a system of nonlinear partial differential equations known as Plebański’s second heavenly equations, which governs the Joyce structure. The paper also defines and studies the Joyce function, which acts as a Hamiltonian generating function for the \(C^*\)-action on the twistor fiber \(Z_{\infty}\).
The paper provides interesting examples, including those arising from spaces of holomorphic quadratic differentials and their connections to supersymmetric gauge theories of class \(S[A_1]\). The construction also extends to cases related to the Painlevé I equation. Notably, the paper highlights deep connections between Joyce structures and cluster varieties, suggesting further applications in mirror symmetry and Poisson geometry.

MSC:

53C26 Hyper-Kähler and quaternionic Kähler geometry, “special” geometry

Cite

References:

[1]Alexandrov, S.; Pioline, B., Heavenly metrics, BPS indices and twistors, Lett. Math. Phys., 111, 5, Article 116 pp., 2021; Alexandrov, S.; Pioline, B., Heavenly metrics, BPS indices and twistors, Lett. Math. Phys., 111, 5, Article 116 pp., 2021 ·Zbl 1491.53063
[2]Alexandrov, S.; Pioline, B., Conformal TBA for resolved conifolds, Ann. Henri Poincaré, 23, 1909-1949, 2022; Alexandrov, S.; Pioline, B., Conformal TBA for resolved conifolds, Ann. Henri Poincaré, 23, 1909-1949, 2022 ·Zbl 1495.14064
[3]Balser, W.; Jurkat, W. B.; Lutz, D. A., Birkhoff invariants and Stokes’ multipliers for meromorphic linear differential equations, J. Math. Anal. Appl., 71, 1, 48-94, 1979; Balser, W.; Jurkat, W. B.; Lutz, D. A., Birkhoff invariants and Stokes’ multipliers for meromorphic linear differential equations, J. Math. Anal. Appl., 71, 1, 48-94, 1979 ·Zbl 0415.34008
[4]Bielawski, R.; Peternell, C., Hilbert schemes, commuting matrices and hyperkähler geometry, J. Lond. Math. Soc. (2), 106, 2, 734-755, 2022; Bielawski, R.; Peternell, C., Hilbert schemes, commuting matrices and hyperkähler geometry, J. Lond. Math. Soc. (2), 106, 2, 734-755, 2022 ·Zbl 1520.14077
[5]Boalch, P., Simply-laced isomonodromy systems, Publ. Math. Inst. Hautes Études Sci., 116, 1-68, 2012; Boalch, P., Simply-laced isomonodromy systems, Publ. Math. Inst. Hautes Études Sci., 116, 1-68, 2012 ·Zbl 1270.34204
[6]Boalch, P., Symplectic manifolds and isomonodromic deformations, Adv. Math., 163, 137-205, 2001; Boalch, P., Symplectic manifolds and isomonodromic deformations, Adv. Math., 163, 137-205, 2001 ·Zbl 1001.53059
[7]Bonahon, F., Shearing hyperbolic surfaces, bending pleated surfaces, and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse: Math., 5, 2, 233-297, 1996; Bonahon, F., Shearing hyperbolic surfaces, bending pleated surfaces, and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse: Math., 5, 2, 233-297, 1996 ·Zbl 0880.57005
[8]Bonelli, G.; Lisovyy, O.; Maruyoshi, K.; Sciarappa, A.; Tanzini, A., On Painlevé / gauge theory correspondence, Lett. Math. Phys., 107, 12, 2359-2413, 2017; Bonelli, G.; Lisovyy, O.; Maruyoshi, K.; Sciarappa, A.; Tanzini, A., On Painlevé / gauge theory correspondence, Lett. Math. Phys., 107, 12, 2359-2413, 2017 ·Zbl 1380.34130
[9]Bridgeland, T., Stability conditions on triangulated categories, Ann. Math. (2), 166, 2, 317-345, 2007; Bridgeland, T., Stability conditions on triangulated categories, Ann. Math. (2), 166, 2, 317-345, 2007 ·Zbl 1137.18008
[10]Bridgeland, T., Spaces of Stability Conditions, Part 1, Proc. Sympos. Pure Math., vol. 80, 1-21, 2009, AMS; Bridgeland, T., Spaces of Stability Conditions, Part 1, Proc. Sympos. Pure Math., vol. 80, 1-21, 2009, AMS ·Zbl 1169.14303
[11]Bridgeland, T., Geometry from Donaldson-Thomas Invariants, Integrability, Quantization, and Geometry II. Quantum Theories and Algebraic Geometry, Proc. Sympos. Pure Math., 1-66, 2021, Amer. Math. Soc.; Bridgeland, T., Geometry from Donaldson-Thomas Invariants, Integrability, Quantization, and Geometry II. Quantum Theories and Algebraic Geometry, Proc. Sympos. Pure Math., 1-66, 2021, Amer. Math. Soc. ·Zbl 1468.14078
[12]Bridgeland, T.; Masoero, D., On the monodromy of the deformed cubic oscillator, Math. Ann., 385, 1-2, 193-258, 2023; Bridgeland, T.; Masoero, D., On the monodromy of the deformed cubic oscillator, Math. Ann., 385, 1-2, 193-258, 2023 ·Zbl 1514.14066
[13]Bridgeland, T.; Smith, I., Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci., 121, 155-278, 2015; Bridgeland, T.; Smith, I., Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci., 121, 155-278, 2015 ·Zbl 1328.14025
[14]Bridgeland, T.; Strachan, I. A.B., Complex hyperkähler structures defined by Donaldson-Thomas invariants, Lett. Math. Phys., 111, 2, Article 54 pp., 2021; Bridgeland, T.; Strachan, I. A.B., Complex hyperkähler structures defined by Donaldson-Thomas invariants, Lett. Math. Phys., 111, 2, Article 54 pp., 2021 ·Zbl 1475.14108
[15]Bridgeland, T., Joyce structures on spaces of quadratic differentials; Bridgeland, T., Joyce structures on spaces of quadratic differentials
[16]Dubrovin, B., Geometry of 2D Topological Field Theories, Lecture Notes in Math., vol. 1620, 120-348, 1996, Springer-Verlag; Dubrovin, B., Geometry of 2D Topological Field Theories, Lecture Notes in Math., vol. 1620, 120-348, 1996, Springer-Verlag ·Zbl 0841.58065
[17]Dubrovin, B., Painlevé transcendents in two-dimensional topological field theory, (CRM Ser. Math. Phys., 1999, Springer-Verlag), 287-412; Dubrovin, B., Painlevé transcendents in two-dimensional topological field theory, (CRM Ser. Math. Phys., 1999, Springer-Verlag), 287-412 ·Zbl 1026.34095
[18]Dunajski, M.; Mason, L., Hyperkähler hierarchies and their twistor theory, Commun. Math. Phys., 213, 641-672, 2000; Dunajski, M.; Mason, L., Hyperkähler hierarchies and their twistor theory, Commun. Math. Phys., 213, 641-672, 2000 ·Zbl 0988.53021
[19]Dunajski, M., Null Kähler geometry and isomonodromic deformations, Commun. Math. Phys., 391, 1, 77-105, 2022; Dunajski, M., Null Kähler geometry and isomonodromic deformations, Commun. Math. Phys., 391, 1, 77-105, 2022 ·Zbl 1506.53035
[20]Dunajski, M.; Moy, T., Heavenly metrics, hyper-Lagrangians and Joyce structures; Dunajski, M.; Moy, T., Heavenly metrics, hyper-Lagrangians and Joyce structures ·Zbl 07947523
[21]Fenyes, A., A dynamical perspective on shear-bend coordinates; Fenyes, A., A dynamical perspective on shear-bend coordinates
[22]Fock, V. V.; Goncharov, A. B., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci., 103, 1, 1-211, 2006; Fock, V. V.; Goncharov, A. B., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci., 103, 1, 1-211, 2006 ·Zbl 1099.14025
[23]Gaiotto, D., Opers and TBA; Gaiotto, D., Opers and TBA
[24]Gaiotto, D.; Moore, G.; Neitzke, A., Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys., 299, 1, 163-224, 2010; Gaiotto, D.; Moore, G.; Neitzke, A., Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys., 299, 1, 163-224, 2010 ·Zbl 1225.81135
[25]Gaiotto, D.; Moore, G.; Neitzke, A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math., 234, 239-403, 2013; Gaiotto, D.; Moore, G.; Neitzke, A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math., 234, 239-403, 2013 ·Zbl 1358.81150
[26]Gotay, M. J.; Lashof, R.; Śniatycki, J.; Weinstein, A., Closed forms on symplectic fibre bundles, Comment. Math. Helv., 58, 4, 617-621, 1983; Gotay, M. J.; Lashof, R.; Śniatycki, J.; Weinstein, A., Closed forms on symplectic fibre bundles, Comment. Math. Helv., 58, 4, 617-621, 1983 ·Zbl 0536.53040
[27]Haiden, F., 3d Calabi-Yau categories for Teichmüller theory, Duke Math. J., 173, 2, 277-346, 2024; Haiden, F., 3d Calabi-Yau categories for Teichmüller theory, Duke Math. J., 173, 2, 277-346, 2024 ·Zbl 1551.14209
[28]Hurtubise, J. C., On the geometry of isomonodromic deformations, J. Geom. Phys., 58, 10, 1394-1406, 2008; Hurtubise, J. C., On the geometry of isomonodromic deformations, J. Geom. Phys., 58, 10, 1394-1406, 2008 ·Zbl 1153.37034
[29]Jardim, M.; Verbitsky, M., Moduli spaces of framed instanton bundles on \(\mathbb{C} \mathbb{P}^3\) and twistor sections of moduli spaces of instantons on \(\mathbb{R}^4\), Adv. Math., 227, 1526-1538, 2011; Jardim, M.; Verbitsky, M., Moduli spaces of framed instanton bundles on \(\mathbb{C} \mathbb{P}^3\) and twistor sections of moduli spaces of instantons on \(\mathbb{R}^4\), Adv. Math., 227, 1526-1538, 2011 ·Zbl 1260.14016
[30]Jardim, M.; Verbitsky, M., Trihyperkähler reduction and instanton bundles on \(\mathbb{C} \mathbb{P}^3\), Compos. Math., 150, 11, 1836-1868, 2014; Jardim, M.; Verbitsky, M., Trihyperkähler reduction and instanton bundles on \(\mathbb{C} \mathbb{P}^3\), Compos. Math., 150, 11, 1836-1868, 2014 ·Zbl 1396.14012
[31]Joyce, D., Holomorphic generating functions for invariants counting coherent sheaves on Calabi-Yau 3-folds, Geom. Topol., 11, 667-725, 2007; Joyce, D., Holomorphic generating functions for invariants counting coherent sheaves on Calabi-Yau 3-folds, Geom. Topol., 11, 667-725, 2007 ·Zbl 1141.14023
[32]Joyce, D.; Song, Y., A theory of generalized Donaldson-Thomas invariants, Mem. Am. Math. Soc., 217, 1020, 2012, iv+199 pp.; Joyce, D.; Song, Y., A theory of generalized Donaldson-Thomas invariants, Mem. Am. Math. Soc., 217, 1020, 2012, iv+199 pp. ·Zbl 1259.14054
[33]Kolář, I.; Michor, P. W.; Slovák, J., Natural Operations in Differential Geometry, 1993, Springer-Verlag: Springer-Verlag Berlin, vi+434 pp.; Kolář, I.; Michor, P. W.; Slovák, J., Natural Operations in Differential Geometry, 1993, Springer-Verlag: Springer-Verlag Berlin, vi+434 pp. ·Zbl 0782.53013
[34]Kontsevich, M.; Soibelman, Y., Affine structures and non-Archimedean analytic spaces, Prog. Math., 244, 321-385, 2006; Kontsevich, M.; Soibelman, Y., Affine structures and non-Archimedean analytic spaces, Prog. Math., 244, 321-385, 2006 ·Zbl 1114.14027
[35]Kontsevich, M.; Soibelman, Y., Stability structures, motivic Donaldson-Thomas invariants and cluster transformations; Kontsevich, M.; Soibelman, Y., Stability structures, motivic Donaldson-Thomas invariants and cluster transformations ·Zbl 1202.81120
[36]Moerdijk, I.; Mrčun, J., Introduction to Foliations and Lie Groupoids, Cambridge Studies in Advanced Mathematics, 2003, 173 pp.; Moerdijk, I.; Mrčun, J., Introduction to Foliations and Lie Groupoids, Cambridge Studies in Advanced Mathematics, 2003, 173 pp. ·Zbl 1029.58012
[37]Penrose, R., Non-linear gravitons and curved twistor theory, Gen. Relativ. Gravit., 7, 31-52, 1976; Penrose, R., Non-linear gravitons and curved twistor theory, Gen. Relativ. Gravit., 7, 31-52, 1976 ·Zbl 0354.53025
[38]Plebański, J. F., Some solutions of complex Einstein equations, J. Math. Phys., 16, 1975; Plebański, J. F., Some solutions of complex Einstein equations, J. Math. Phys., 16, 1975
[39]M. Zikidis, Joyce structures from meromorphic quadratic differentials, in preparation.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp