[1] | Alexandrov, S.; Pioline, B., Heavenly metrics, BPS indices and twistors, Lett. Math. Phys., 111, 5, Article 116 pp., 2021; Alexandrov, S.; Pioline, B., Heavenly metrics, BPS indices and twistors, Lett. Math. Phys., 111, 5, Article 116 pp., 2021 ·Zbl 1491.53063 |
[2] | Alexandrov, S.; Pioline, B., Conformal TBA for resolved conifolds, Ann. Henri Poincaré, 23, 1909-1949, 2022; Alexandrov, S.; Pioline, B., Conformal TBA for resolved conifolds, Ann. Henri Poincaré, 23, 1909-1949, 2022 ·Zbl 1495.14064 |
[3] | Balser, W.; Jurkat, W. B.; Lutz, D. A., Birkhoff invariants and Stokes’ multipliers for meromorphic linear differential equations, J. Math. Anal. Appl., 71, 1, 48-94, 1979; Balser, W.; Jurkat, W. B.; Lutz, D. A., Birkhoff invariants and Stokes’ multipliers for meromorphic linear differential equations, J. Math. Anal. Appl., 71, 1, 48-94, 1979 ·Zbl 0415.34008 |
[4] | Bielawski, R.; Peternell, C., Hilbert schemes, commuting matrices and hyperkähler geometry, J. Lond. Math. Soc. (2), 106, 2, 734-755, 2022; Bielawski, R.; Peternell, C., Hilbert schemes, commuting matrices and hyperkähler geometry, J. Lond. Math. Soc. (2), 106, 2, 734-755, 2022 ·Zbl 1520.14077 |
[5] | Boalch, P., Simply-laced isomonodromy systems, Publ. Math. Inst. Hautes Études Sci., 116, 1-68, 2012; Boalch, P., Simply-laced isomonodromy systems, Publ. Math. Inst. Hautes Études Sci., 116, 1-68, 2012 ·Zbl 1270.34204 |
[6] | Boalch, P., Symplectic manifolds and isomonodromic deformations, Adv. Math., 163, 137-205, 2001; Boalch, P., Symplectic manifolds and isomonodromic deformations, Adv. Math., 163, 137-205, 2001 ·Zbl 1001.53059 |
[7] | Bonahon, F., Shearing hyperbolic surfaces, bending pleated surfaces, and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse: Math., 5, 2, 233-297, 1996; Bonahon, F., Shearing hyperbolic surfaces, bending pleated surfaces, and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse: Math., 5, 2, 233-297, 1996 ·Zbl 0880.57005 |
[8] | Bonelli, G.; Lisovyy, O.; Maruyoshi, K.; Sciarappa, A.; Tanzini, A., On Painlevé / gauge theory correspondence, Lett. Math. Phys., 107, 12, 2359-2413, 2017; Bonelli, G.; Lisovyy, O.; Maruyoshi, K.; Sciarappa, A.; Tanzini, A., On Painlevé / gauge theory correspondence, Lett. Math. Phys., 107, 12, 2359-2413, 2017 ·Zbl 1380.34130 |
[9] | Bridgeland, T., Stability conditions on triangulated categories, Ann. Math. (2), 166, 2, 317-345, 2007; Bridgeland, T., Stability conditions on triangulated categories, Ann. Math. (2), 166, 2, 317-345, 2007 ·Zbl 1137.18008 |
[10] | Bridgeland, T., Spaces of Stability Conditions, Part 1, Proc. Sympos. Pure Math., vol. 80, 1-21, 2009, AMS; Bridgeland, T., Spaces of Stability Conditions, Part 1, Proc. Sympos. Pure Math., vol. 80, 1-21, 2009, AMS ·Zbl 1169.14303 |
[11] | Bridgeland, T., Geometry from Donaldson-Thomas Invariants, Integrability, Quantization, and Geometry II. Quantum Theories and Algebraic Geometry, Proc. Sympos. Pure Math., 1-66, 2021, Amer. Math. Soc.; Bridgeland, T., Geometry from Donaldson-Thomas Invariants, Integrability, Quantization, and Geometry II. Quantum Theories and Algebraic Geometry, Proc. Sympos. Pure Math., 1-66, 2021, Amer. Math. Soc. ·Zbl 1468.14078 |
[12] | Bridgeland, T.; Masoero, D., On the monodromy of the deformed cubic oscillator, Math. Ann., 385, 1-2, 193-258, 2023; Bridgeland, T.; Masoero, D., On the monodromy of the deformed cubic oscillator, Math. Ann., 385, 1-2, 193-258, 2023 ·Zbl 1514.14066 |
[13] | Bridgeland, T.; Smith, I., Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci., 121, 155-278, 2015; Bridgeland, T.; Smith, I., Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci., 121, 155-278, 2015 ·Zbl 1328.14025 |
[14] | Bridgeland, T.; Strachan, I. A.B., Complex hyperkähler structures defined by Donaldson-Thomas invariants, Lett. Math. Phys., 111, 2, Article 54 pp., 2021; Bridgeland, T.; Strachan, I. A.B., Complex hyperkähler structures defined by Donaldson-Thomas invariants, Lett. Math. Phys., 111, 2, Article 54 pp., 2021 ·Zbl 1475.14108 |
[15] | Bridgeland, T., Joyce structures on spaces of quadratic differentials; Bridgeland, T., Joyce structures on spaces of quadratic differentials |
[16] | Dubrovin, B., Geometry of 2D Topological Field Theories, Lecture Notes in Math., vol. 1620, 120-348, 1996, Springer-Verlag; Dubrovin, B., Geometry of 2D Topological Field Theories, Lecture Notes in Math., vol. 1620, 120-348, 1996, Springer-Verlag ·Zbl 0841.58065 |
[17] | Dubrovin, B., Painlevé transcendents in two-dimensional topological field theory, (CRM Ser. Math. Phys., 1999, Springer-Verlag), 287-412; Dubrovin, B., Painlevé transcendents in two-dimensional topological field theory, (CRM Ser. Math. Phys., 1999, Springer-Verlag), 287-412 ·Zbl 1026.34095 |
[18] | Dunajski, M.; Mason, L., Hyperkähler hierarchies and their twistor theory, Commun. Math. Phys., 213, 641-672, 2000; Dunajski, M.; Mason, L., Hyperkähler hierarchies and their twistor theory, Commun. Math. Phys., 213, 641-672, 2000 ·Zbl 0988.53021 |
[19] | Dunajski, M., Null Kähler geometry and isomonodromic deformations, Commun. Math. Phys., 391, 1, 77-105, 2022; Dunajski, M., Null Kähler geometry and isomonodromic deformations, Commun. Math. Phys., 391, 1, 77-105, 2022 ·Zbl 1506.53035 |
[20] | Dunajski, M.; Moy, T., Heavenly metrics, hyper-Lagrangians and Joyce structures; Dunajski, M.; Moy, T., Heavenly metrics, hyper-Lagrangians and Joyce structures ·Zbl 07947523 |
[21] | Fenyes, A., A dynamical perspective on shear-bend coordinates; Fenyes, A., A dynamical perspective on shear-bend coordinates |
[22] | Fock, V. V.; Goncharov, A. B., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci., 103, 1, 1-211, 2006; Fock, V. V.; Goncharov, A. B., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci., 103, 1, 1-211, 2006 ·Zbl 1099.14025 |
[23] | Gaiotto, D., Opers and TBA; Gaiotto, D., Opers and TBA |
[24] | Gaiotto, D.; Moore, G.; Neitzke, A., Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys., 299, 1, 163-224, 2010; Gaiotto, D.; Moore, G.; Neitzke, A., Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys., 299, 1, 163-224, 2010 ·Zbl 1225.81135 |
[25] | Gaiotto, D.; Moore, G.; Neitzke, A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math., 234, 239-403, 2013; Gaiotto, D.; Moore, G.; Neitzke, A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math., 234, 239-403, 2013 ·Zbl 1358.81150 |
[26] | Gotay, M. J.; Lashof, R.; Śniatycki, J.; Weinstein, A., Closed forms on symplectic fibre bundles, Comment. Math. Helv., 58, 4, 617-621, 1983; Gotay, M. J.; Lashof, R.; Śniatycki, J.; Weinstein, A., Closed forms on symplectic fibre bundles, Comment. Math. Helv., 58, 4, 617-621, 1983 ·Zbl 0536.53040 |
[27] | Haiden, F., 3d Calabi-Yau categories for Teichmüller theory, Duke Math. J., 173, 2, 277-346, 2024; Haiden, F., 3d Calabi-Yau categories for Teichmüller theory, Duke Math. J., 173, 2, 277-346, 2024 ·Zbl 1551.14209 |
[28] | Hurtubise, J. C., On the geometry of isomonodromic deformations, J. Geom. Phys., 58, 10, 1394-1406, 2008; Hurtubise, J. C., On the geometry of isomonodromic deformations, J. Geom. Phys., 58, 10, 1394-1406, 2008 ·Zbl 1153.37034 |
[29] | Jardim, M.; Verbitsky, M., Moduli spaces of framed instanton bundles on \(\mathbb{C} \mathbb{P}^3\) and twistor sections of moduli spaces of instantons on \(\mathbb{R}^4\), Adv. Math., 227, 1526-1538, 2011; Jardim, M.; Verbitsky, M., Moduli spaces of framed instanton bundles on \(\mathbb{C} \mathbb{P}^3\) and twistor sections of moduli spaces of instantons on \(\mathbb{R}^4\), Adv. Math., 227, 1526-1538, 2011 ·Zbl 1260.14016 |
[30] | Jardim, M.; Verbitsky, M., Trihyperkähler reduction and instanton bundles on \(\mathbb{C} \mathbb{P}^3\), Compos. Math., 150, 11, 1836-1868, 2014; Jardim, M.; Verbitsky, M., Trihyperkähler reduction and instanton bundles on \(\mathbb{C} \mathbb{P}^3\), Compos. Math., 150, 11, 1836-1868, 2014 ·Zbl 1396.14012 |
[31] | Joyce, D., Holomorphic generating functions for invariants counting coherent sheaves on Calabi-Yau 3-folds, Geom. Topol., 11, 667-725, 2007; Joyce, D., Holomorphic generating functions for invariants counting coherent sheaves on Calabi-Yau 3-folds, Geom. Topol., 11, 667-725, 2007 ·Zbl 1141.14023 |
[32] | Joyce, D.; Song, Y., A theory of generalized Donaldson-Thomas invariants, Mem. Am. Math. Soc., 217, 1020, 2012, iv+199 pp.; Joyce, D.; Song, Y., A theory of generalized Donaldson-Thomas invariants, Mem. Am. Math. Soc., 217, 1020, 2012, iv+199 pp. ·Zbl 1259.14054 |
[33] | Kolář, I.; Michor, P. W.; Slovák, J., Natural Operations in Differential Geometry, 1993, Springer-Verlag: Springer-Verlag Berlin, vi+434 pp.; Kolář, I.; Michor, P. W.; Slovák, J., Natural Operations in Differential Geometry, 1993, Springer-Verlag: Springer-Verlag Berlin, vi+434 pp. ·Zbl 0782.53013 |
[34] | Kontsevich, M.; Soibelman, Y., Affine structures and non-Archimedean analytic spaces, Prog. Math., 244, 321-385, 2006; Kontsevich, M.; Soibelman, Y., Affine structures and non-Archimedean analytic spaces, Prog. Math., 244, 321-385, 2006 ·Zbl 1114.14027 |
[35] | Kontsevich, M.; Soibelman, Y., Stability structures, motivic Donaldson-Thomas invariants and cluster transformations; Kontsevich, M.; Soibelman, Y., Stability structures, motivic Donaldson-Thomas invariants and cluster transformations ·Zbl 1202.81120 |
[36] | Moerdijk, I.; Mrčun, J., Introduction to Foliations and Lie Groupoids, Cambridge Studies in Advanced Mathematics, 2003, 173 pp.; Moerdijk, I.; Mrčun, J., Introduction to Foliations and Lie Groupoids, Cambridge Studies in Advanced Mathematics, 2003, 173 pp. ·Zbl 1029.58012 |
[37] | Penrose, R., Non-linear gravitons and curved twistor theory, Gen. Relativ. Gravit., 7, 31-52, 1976; Penrose, R., Non-linear gravitons and curved twistor theory, Gen. Relativ. Gravit., 7, 31-52, 1976 ·Zbl 0354.53025 |
[38] | Plebański, J. F., Some solutions of complex Einstein equations, J. Math. Phys., 16, 1975; Plebański, J. F., Some solutions of complex Einstein equations, J. Math. Phys., 16, 1975 |
[39] | M. Zikidis, Joyce structures from meromorphic quadratic differentials, in preparation. |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.