Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Border subrank via a generalised Hilbert-Mumford criterion.(English)Zbl 07967031

Summary: We show that the border subrank of a sufficiently general tensor in \(( \mathbb{C}^n )^{\otimes d}\) is \(\mathcal{O}( n^{1 / ( d - 1 )})\) for \(n \to \infty \). Since this matches the growth rate \(\operatorname{\Theta}( n^{1 / ( d - 1 )})\) for the generic (non-border) subrank recently established by Derksen-Makam-Zuiddam, we find that the generic border subrank has the same growth rate. In our proof, we use a generalisation of the Hilbert-Mumford criterion that we believe will be of independent interest.

MSC:

15A69 Multilinear algebra, tensor calculus
14L24 Geometric invariant theory

Cite

References:

[1]Alper, J.; Heinloth, J.; Halpern-Leistner, D., Cartan-Iwahori-Matsumoto decompositions for reductive groups, Pure Appl. Math. Q., 17, 2, 593-604, 2021; Alper, J.; Heinloth, J.; Halpern-Leistner, D., Cartan-Iwahori-Matsumoto decompositions for reductive groups, Pure Appl. Math. Q., 17, 2, 593-604, 2021 ·Zbl 1462.14050
[2]Borel, A., Linear Algebraic Groups, 2nd Enlarged ed., 1991, Springer-Verlag: Springer-Verlag New York etc.; Borel, A., Linear Algebraic Groups, 2nd Enlarged ed., 1991, Springer-Verlag: Springer-Verlag New York etc. ·Zbl 0726.20030
[3]Bürgisser, P., Degenerationsordnung und trägerfunktional bilinearer abbildungen, 1997, Fakultät für Mathematik und Informatik, Universität Konstanz, Technical Report 46; Bürgisser, P., Degenerationsordnung und trägerfunktional bilinearer abbildungen, 1997, Fakultät für Mathematik und Informatik, Universität Konstanz, Technical Report 46
[4]Chang, C.-Y., Maximal border subrank tensors, (Linear Multilinear Algebra, 2024), in press; Chang, C.-Y., Maximal border subrank tensors, (Linear Multilinear Algebra, 2024), in press
[5]Derksen, H.; Makam, V.; Zuiddam, J., Subrank and optimal reduction of scalar multiplications to generic tensors, J. Lond. Math. Soc., II. Ser., 110, 2, 26, 2024; Derksen, H.; Makam, V.; Zuiddam, J., Subrank and optimal reduction of scalar multiplications to generic tensors, J. Lond. Math. Soc., II. Ser., 110, 2, 26, 2024 ·Zbl 1547.15020
[6]Dubé, T. W., The structure of polynomial ideals and Gröbner bases, SIAM J. Comput., 19, 4, 750-773, 1990; Dubé, T. W., The structure of polynomial ideals and Gröbner bases, SIAM J. Comput., 19, 4, 750-773, 1990 ·Zbl 0697.68051
[7]Iwahori, N.; Matsumoto, H., On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. Inst. Hautes Études Sci., 25, 5-48, 1965; Iwahori, N.; Matsumoto, H., On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. Inst. Hautes Études Sci., 25, 5-48, 1965 ·Zbl 0228.20015
[8]Kempf, G. R., Instability in invariant theory, Ann. Math., 108, 299-316, 1978; Kempf, G. R., Instability in invariant theory, Ann. Math., 108, 299-316, 1978 ·Zbl 0406.14031
[9]Landsberg, J. M.; Ottaviani, G., Equations for secant varieties of Veronese and other varieties, Ann. Mat. Pura Appl. (4), 192, 4, 569-606, 2013; Landsberg, J. M.; Ottaviani, G., Equations for secant varieties of Veronese and other varieties, Ann. Mat. Pura Appl. (4), 192, 4, 569-606, 2013 ·Zbl 1274.14058
[10]Lickteig, T., Typical tensorial rank, Linear Algebra Appl., 69, 95-120, 1985; Lickteig, T., Typical tensorial rank, Linear Algebra Appl., 69, 95-120, 1985 ·Zbl 0575.15013
[11]Mukai, S., An Introduction to Invariants and Moduli, Cambridge Tracts in Mathematics, vol. 81, 2003, Cambridge University Press: Cambridge University Press Cambridge, Transl. by W. M. Oxbury; Mukai, S., An Introduction to Invariants and Moduli, Cambridge Tracts in Mathematics, vol. 81, 2003, Cambridge University Press: Cambridge University Press Cambridge, Transl. by W. M. Oxbury ·Zbl 1033.14008
[12]Mumford, D.; Fogarty, J.; Kirwan, F., Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 34, 1993, Springer-Verlag: Springer-Verlag Berlin; Mumford, D.; Fogarty, J.; Kirwan, F., Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 34, 1993, Springer-Verlag: Springer-Verlag Berlin
[13]Pielasa, P.; Šafránek, M.; Shatsila, A., Exact values of generic subrank, 2024. Preprint; Pielasa, P.; Šafránek, M.; Shatsila, A., Exact values of generic subrank, 2024. Preprint
[14]Popov, V. L.; Vinberg, E. B., Invariant Theory, Encyclopaedia of Mathematical Sciences, Chapter II, vol. 55, 1994, Springer-Verlag: Springer-Verlag Berlin; Popov, V. L.; Vinberg, E. B., Invariant Theory, Encyclopaedia of Mathematical Sciences, Chapter II, vol. 55, 1994, Springer-Verlag: Springer-Verlag Berlin
[15]Strassen, V., Degeneration and complexity of bilinear maps: some asymptotic spectra, J. Reine Angew. Math., 1991, 413, 127-180, 1991; Strassen, V., Degeneration and complexity of bilinear maps: some asymptotic spectra, J. Reine Angew. Math., 1991, 413, 127-180, 1991 ·Zbl 0746.65049
[16]Tao, T.; Sawin, W., Notes on the “slice rank” of tensors, 2016; Tao, T.; Sawin, W., Notes on the “slice rank” of tensors, 2016
[17]Volker, S., Gaussian elimination is not optimal, Numer. Math., 13, 354-356, 1969; Volker, S., Gaussian elimination is not optimal, Numer. Math., 13, 354-356, 1969 ·Zbl 0185.40101
[18]Volker, S., Rank and optimal computation of generic tensors, Linear Algebra Appl., 52-53, 645-685, 1983; Volker, S., Rank and optimal computation of generic tensors, Linear Algebra Appl., 52-53, 645-685, 1983 ·Zbl 0514.15018
[19]Volker, S., Relative bilinear complexity and matrix multiplication, J. Reine Angew. Math., 375/376, 406-443, 1987; Volker, S., Relative bilinear complexity and matrix multiplication, J. Reine Angew. Math., 375/376, 406-443, 1987 ·Zbl 0621.68026
[20]Watrous, J., The Theory of Quantum Information, 2018, Cambridge University Press; Watrous, J., The Theory of Quantum Information, 2018, Cambridge University Press ·Zbl 1393.81004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp