Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Analytic and topological nets.(English)Zbl 07967016

Summary: We characterize which planar graphs arise as the pullback, under a rational map \(r\), of an analytic Jordan curve passing through the critical values of \(r\). We also prove that such pullbacks are dense within the collection of \(f^{-1}(\Sigma)\), where \(f\) is a branched cover of the sphere and \(\Sigma\) is a Jordan curve passing through the branched values of \(f\).

MSC:

30C10 Polynomials and rational functions of one complex variable
30C62 Quasiconformal mappings in the complex plane
30E10 Approximation in the complex plane
41A20 Approximation by rational functions

Cite

References:

[1]Astala, K.; Jones, P.; Kupiainen, A.; Saksman, E., Random conformal weldings, Acta Math., 207, 2, 203-254, 2011; Astala, K.; Jones, P.; Kupiainen, A.; Saksman, E., Random conformal weldings, Acta Math., 207, 2, 203-254, 2011 ·Zbl 1253.30032
[2]Bishop, C. J., Conformal welding and Koebe’s theorem, Ann. Math. (2), 166, 3, 613-656, 2007; Bishop, C. J., Conformal welding and Koebe’s theorem, Ann. Math. (2), 166, 3, 613-656, 2007 ·Zbl 1144.30007
[3]Bishop, C. J., Constructing entire functions by quasiconformal folding, Acta Math., 214, 1, 1-60, 2015; Bishop, C. J., Constructing entire functions by quasiconformal folding, Acta Math., 214, 1, 1-60, 2015 ·Zbl 1338.30016
[4]C.J. Bishop, K. Lazebnik, Hilbert’s lemniscate theorem for rational maps, preprint, 2023.
[5]Douady, A.; Hubbard, J. H., A proof of Thurston’s topological characterization of rational functions, Acta Math., 171, 2, 263-297, 1993; Douady, A.; Hubbard, J. H., A proof of Thurston’s topological characterization of rational functions, Acta Math., 171, 2, 263-297, 1993 ·Zbl 0806.30027
[6]Eremenko, A.; Gabrielov, A., Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry, Ann. Math. (2), 155, 1, 105-129, 2002; Eremenko, A.; Gabrielov, A., Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry, Ann. Math. (2), 155, 1, 105-129, 2002 ·Zbl 0997.14015
[7]Fagella, N.; Jarque, X.; Lazebnik, K., Univalent wandering domains in the Eremenko-Lyubich class, J. Anal. Math., 139, 1, 369-395, 2019; Fagella, N.; Jarque, X.; Lazebnik, K., Univalent wandering domains in the Eremenko-Lyubich class, J. Anal. Math., 139, 1, 369-395, 2019 ·Zbl 1435.30084
[8]Garnett, J. B.; Marshall, D. E., Harmonic Measure, New Mathematical Monographs, vol. 2, 2008, Cambridge University Press: Cambridge University Press Cambridge, Reprint of the 2005 original; Garnett, J. B.; Marshall, D. E., Harmonic Measure, New Mathematical Monographs, vol. 2, 2008, Cambridge University Press: Cambridge University Press Cambridge, Reprint of the 2005 original ·Zbl 1077.31001
[9]Hamilton, D. H., Conformal welding, (Handbook of Complex Analysis: Geometric Function Theory, vol. 1, 2002, North-Holland: North-Holland Amsterdam), 137-146; Hamilton, D. H., Conformal welding, (Handbook of Complex Analysis: Geometric Function Theory, vol. 1, 2002, North-Holland: North-Holland Amsterdam), 137-146 ·Zbl 1081.30013
[10]Koch, S.; Tan, L., On balanced planar graphs, following W. Thurston, (What’s Next?—The Mathematical Legacy of William P. Thurston. What’s Next?—The Mathematical Legacy of William P. Thurston, Ann. of Math. Stud., vol. 205, 2020, Princeton Univ. Press: Princeton Univ. Press Princeton, NJ), 215-232; Koch, S.; Tan, L., On balanced planar graphs, following W. Thurston, (What’s Next?—The Mathematical Legacy of William P. Thurston. What’s Next?—The Mathematical Legacy of William P. Thurston, Ann. of Math. Stud., vol. 205, 2020, Princeton Univ. Press: Princeton Univ. Press Princeton, NJ), 215-232 ·Zbl 1452.57020
[11]Lehto, O.; Virtanen, K. I., Quasiconformal Mappings in the Plane, Die Grundlehren der Mathematischen Wissenschaften, vol. 126, 1973, Springer-Verlag: Springer-Verlag New York-Heidelberg, Translated from the German by K.W. Lucas; Lehto, O.; Virtanen, K. I., Quasiconformal Mappings in the Plane, Die Grundlehren der Mathematischen Wissenschaften, vol. 126, 1973, Springer-Verlag: Springer-Verlag New York-Heidelberg, Translated from the German by K.W. Lucas ·Zbl 0267.30016
[12]Marshall, D. E., Conformal welding for finitely connected regions, Comput. Methods Funct. Theory, 11, 2, 655-669, 2011; Marshall, D. E., Conformal welding for finitely connected regions, Comput. Methods Funct. Theory, 11, 2, 655-669, 2011 ·Zbl 1252.30002
[13]Martí-Pete, D.; Shishikura, M., Wandering domains for entire functions of finite order in the Eremenko-Lyubich class, Proc. Lond. Math. Soc. (3), 120, 2, 155-191, 2020; Martí-Pete, D.; Shishikura, M., Wandering domains for entire functions of finite order in the Eremenko-Lyubich class, Proc. Lond. Math. Soc. (3), 120, 2, 155-191, 2020 ·Zbl 1462.37049
[14]Thurston, B., What are the shapes of rational functions?, 2010, (version: 2017-04-13); Thurston, B., What are the shapes of rational functions?, 2010, (version: 2017-04-13)
[15]Thurston, D. P., A positive characterization of rational maps, Ann. Math. (2), 192, 1, 1-46, 2020; Thurston, D. P., A positive characterization of rational maps, Ann. Math. (2), 192, 1, 1-46, 2020 ·Zbl 1450.37042
[16]Tomasini, J., Realizations of branched self-coverings of the 2-sphere, Topol. Appl., 196, 31-53, 2015; Tomasini, J., Realizations of branched self-coverings of the 2-sphere, Topol. Appl., 196, 31-53, 2015 ·Zbl 1332.57005
[17]Malik, Y., Removability and non-injectivity of conformal welding, Ann. Acad. Sci. Fenn., Math., 43, 1, 463-473, 2018; Malik, Y., Removability and non-injectivity of conformal welding, Ann. Acad. Sci. Fenn., Math., 43, 1, 463-473, 2018 ·Zbl 1392.30006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp