[1] | Astala, K.; Jones, P.; Kupiainen, A.; Saksman, E., Random conformal weldings, Acta Math., 207, 2, 203-254, 2011; Astala, K.; Jones, P.; Kupiainen, A.; Saksman, E., Random conformal weldings, Acta Math., 207, 2, 203-254, 2011 ·Zbl 1253.30032 |
[2] | Bishop, C. J., Conformal welding and Koebe’s theorem, Ann. Math. (2), 166, 3, 613-656, 2007; Bishop, C. J., Conformal welding and Koebe’s theorem, Ann. Math. (2), 166, 3, 613-656, 2007 ·Zbl 1144.30007 |
[3] | Bishop, C. J., Constructing entire functions by quasiconformal folding, Acta Math., 214, 1, 1-60, 2015; Bishop, C. J., Constructing entire functions by quasiconformal folding, Acta Math., 214, 1, 1-60, 2015 ·Zbl 1338.30016 |
[4] | C.J. Bishop, K. Lazebnik, Hilbert’s lemniscate theorem for rational maps, preprint, 2023. |
[5] | Douady, A.; Hubbard, J. H., A proof of Thurston’s topological characterization of rational functions, Acta Math., 171, 2, 263-297, 1993; Douady, A.; Hubbard, J. H., A proof of Thurston’s topological characterization of rational functions, Acta Math., 171, 2, 263-297, 1993 ·Zbl 0806.30027 |
[6] | Eremenko, A.; Gabrielov, A., Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry, Ann. Math. (2), 155, 1, 105-129, 2002; Eremenko, A.; Gabrielov, A., Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry, Ann. Math. (2), 155, 1, 105-129, 2002 ·Zbl 0997.14015 |
[7] | Fagella, N.; Jarque, X.; Lazebnik, K., Univalent wandering domains in the Eremenko-Lyubich class, J. Anal. Math., 139, 1, 369-395, 2019; Fagella, N.; Jarque, X.; Lazebnik, K., Univalent wandering domains in the Eremenko-Lyubich class, J. Anal. Math., 139, 1, 369-395, 2019 ·Zbl 1435.30084 |
[8] | Garnett, J. B.; Marshall, D. E., Harmonic Measure, New Mathematical Monographs, vol. 2, 2008, Cambridge University Press: Cambridge University Press Cambridge, Reprint of the 2005 original; Garnett, J. B.; Marshall, D. E., Harmonic Measure, New Mathematical Monographs, vol. 2, 2008, Cambridge University Press: Cambridge University Press Cambridge, Reprint of the 2005 original ·Zbl 1077.31001 |
[9] | Hamilton, D. H., Conformal welding, (Handbook of Complex Analysis: Geometric Function Theory, vol. 1, 2002, North-Holland: North-Holland Amsterdam), 137-146; Hamilton, D. H., Conformal welding, (Handbook of Complex Analysis: Geometric Function Theory, vol. 1, 2002, North-Holland: North-Holland Amsterdam), 137-146 ·Zbl 1081.30013 |
[10] | Koch, S.; Tan, L., On balanced planar graphs, following W. Thurston, (What’s Next?—The Mathematical Legacy of William P. Thurston. What’s Next?—The Mathematical Legacy of William P. Thurston, Ann. of Math. Stud., vol. 205, 2020, Princeton Univ. Press: Princeton Univ. Press Princeton, NJ), 215-232; Koch, S.; Tan, L., On balanced planar graphs, following W. Thurston, (What’s Next?—The Mathematical Legacy of William P. Thurston. What’s Next?—The Mathematical Legacy of William P. Thurston, Ann. of Math. Stud., vol. 205, 2020, Princeton Univ. Press: Princeton Univ. Press Princeton, NJ), 215-232 ·Zbl 1452.57020 |
[11] | Lehto, O.; Virtanen, K. I., Quasiconformal Mappings in the Plane, Die Grundlehren der Mathematischen Wissenschaften, vol. 126, 1973, Springer-Verlag: Springer-Verlag New York-Heidelberg, Translated from the German by K.W. Lucas; Lehto, O.; Virtanen, K. I., Quasiconformal Mappings in the Plane, Die Grundlehren der Mathematischen Wissenschaften, vol. 126, 1973, Springer-Verlag: Springer-Verlag New York-Heidelberg, Translated from the German by K.W. Lucas ·Zbl 0267.30016 |
[12] | Marshall, D. E., Conformal welding for finitely connected regions, Comput. Methods Funct. Theory, 11, 2, 655-669, 2011; Marshall, D. E., Conformal welding for finitely connected regions, Comput. Methods Funct. Theory, 11, 2, 655-669, 2011 ·Zbl 1252.30002 |
[13] | Martí-Pete, D.; Shishikura, M., Wandering domains for entire functions of finite order in the Eremenko-Lyubich class, Proc. Lond. Math. Soc. (3), 120, 2, 155-191, 2020; Martí-Pete, D.; Shishikura, M., Wandering domains for entire functions of finite order in the Eremenko-Lyubich class, Proc. Lond. Math. Soc. (3), 120, 2, 155-191, 2020 ·Zbl 1462.37049 |
[14] | Thurston, B., What are the shapes of rational functions?, 2010, (version: 2017-04-13); Thurston, B., What are the shapes of rational functions?, 2010, (version: 2017-04-13) |
[15] | Thurston, D. P., A positive characterization of rational maps, Ann. Math. (2), 192, 1, 1-46, 2020; Thurston, D. P., A positive characterization of rational maps, Ann. Math. (2), 192, 1, 1-46, 2020 ·Zbl 1450.37042 |
[16] | Tomasini, J., Realizations of branched self-coverings of the 2-sphere, Topol. Appl., 196, 31-53, 2015; Tomasini, J., Realizations of branched self-coverings of the 2-sphere, Topol. Appl., 196, 31-53, 2015 ·Zbl 1332.57005 |
[17] | Malik, Y., Removability and non-injectivity of conformal welding, Ann. Acad. Sci. Fenn., Math., 43, 1, 463-473, 2018; Malik, Y., Removability and non-injectivity of conformal welding, Ann. Acad. Sci. Fenn., Math., 43, 1, 463-473, 2018 ·Zbl 1392.30006 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.