Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Quasilinear tropical compactifications.(English)Zbl 07967015

Summary: The prototypical examples of tropical compactifications are compactifications of complements of hyperplane arrangements, which posses a number of remarkable properties not satisfied by more general tropical compactifications of closed subvarieties of tori. We introduce a broader class of tropical compactifications, which we callquasilinear (tropical) compactifications, and which continue to satisfy the desirable properties of compactifications of complements of hyperplane arrangements. In particular, we show any quasilinear compactification is schön, and its intersection theory is described entirely by the intersection theory of the corresponding tropical fan. As applications, we prove the quasilinearity of the moduli spaces of 6 lines in \(\mathbb{P}^2\) and marked cubic surfaces, obtaining results on the geometry of the stable pair compactifications of these spaces.

MSC:

14T90 Applications of tropical geometry
14J10 Families, moduli, classification: algebraic theory
14C15 (Equivariant) Chow groups and rings; motives

Cite

References:

[1]Abramovich, D.; Karu, K., Weak semistable reduction in characteristic 0, Invent. Math., 139, 2, 241-273, 2000; Abramovich, D.; Karu, K., Weak semistable reduction in characteristic 0, Invent. Math., 139, 2, 241-273, 2000 ·Zbl 0958.14006
[2]Adiprasito, K.; Huh, J.; Katz, E., Hodge theory for combinatorial geometries, Ann. Math., 188, 2, 2018; Adiprasito, K.; Huh, J.; Katz, E., Hodge theory for combinatorial geometries, Ann. Math., 188, 2, 2018 ·Zbl 1442.14194
[3]Alexeev, V., Moduli of Weighted Hyperplane Arrangements, Advanced Courses in Mathematics - CRM Barcelona, 2015, Springer Basel: Springer Basel Basel; Alexeev, V., Moduli of Weighted Hyperplane Arrangements, Advanced Courses in Mathematics - CRM Barcelona, 2015, Springer Basel: Springer Basel Basel ·Zbl 1334.14001
[4]Allermann, L.; Rau, J., First steps in tropical intersection theory, Math. Z., 264, 3, 2010; Allermann, L.; Rau, J., First steps in tropical intersection theory, Math. Z., 264, 3, 2010 ·Zbl 1193.14074
[5]Allermann, L.; Hampe, S.; Rau, J., On rational equivalence in tropical geometry, Can. J. Math., 68, 2, 241-257, 2016; Allermann, L.; Hampe, S.; Rau, J., On rational equivalence in tropical geometry, Can. J. Math., 68, 2, 241-257, 2016 ·Zbl 1407.14057
[6]Amini, O.; Piquerez, M., Hodge theory for tropical varieties, 2020; Amini, O.; Piquerez, M., Hodge theory for tropical varieties, 2020
[7]Amini, O.; Piquerez, M., Homology of tropical fans, 2021; Amini, O.; Piquerez, M., Homology of tropical fans, 2021
[8]Ardila, F.; Denham, G.; Huh, J., Lagrangian geometry of matroids, J. Am. Math. Soc., 2022; Ardila, F.; Denham, G.; Huh, J., Lagrangian geometry of matroids, J. Am. Math. Soc., 2022
[9]Brion, M., Piecewise polynomial functions, convex polytopes and enumerative geometry, Banach Cent. Publ., 36, 1, 25-44, 1996; Brion, M., Piecewise polynomial functions, convex polytopes and enumerative geometry, Banach Cent. Publ., 36, 1, 25-44, 1996 ·Zbl 0878.14035
[10]Brugallé, E. A.; López de Medrano, L. M., Inflection points of real and tropical plane curves, J. Singul., 4, 74-103, 2012; Brugallé, E. A.; López de Medrano, L. M., Inflection points of real and tropical plane curves, J. Singul., 4, 74-103, 2012 ·Zbl 1292.14042
[11]Cartwright, D., The Gröbner stratification of a tropical variety, 2012; Cartwright, D., The Gröbner stratification of a tropical variety, 2012
[12]Colombo, E.; van Geemen, B., The Chow group of the moduli space of marked cubic surfaces, Ann. Mat. Pura Appl. (4), 183, 3, 291-316, 2004; Colombo, E.; van Geemen, B., The Chow group of the moduli space of marked cubic surfaces, Ann. Mat. Pura Appl. (4), 183, 3, 291-316, 2004 ·Zbl 1099.14028
[13]Corey, D., Initial degenerations of Grassmannians, Sel. Math., 27, 4, 57, 2021; Corey, D., Initial degenerations of Grassmannians, Sel. Math., 27, 4, 57, 2021 ·Zbl 1470.14122
[14]Corey, D.; Luber, D., The Grassmannian of 3-planes in \(\mathbb{C}^8\) is schön, Algebraic Combin., 6, 5, 1273-1299, 2023; Corey, D.; Luber, D., The Grassmannian of 3-planes in \(\mathbb{C}^8\) is schön, Algebraic Combin., 6, 5, 1273-1299, 2023 ·Zbl 1548.14154
[15]Cox, D. A.; Little, J. B.; Schenck, H. K., Toric Varieties, Graduate Studies in Mathematics, vol. 124, 2011, American Mathematical Society: American Mathematical Society Providence, R.I.; Cox, D. A.; Little, J. B.; Schenck, H. K., Toric Varieties, Graduate Studies in Mathematics, vol. 124, 2011, American Mathematical Society: American Mathematical Society Providence, R.I. ·Zbl 1223.14001
[16]Cueto, M. A., Tropical Implicitization, 2010, Ph.D. thesis; Cueto, M. A., Tropical Implicitization, 2010, Ph.D. thesis
[17]Cueto, M. A., Implicitization of surfaces via geometric tropicalization; Cueto, M. A., Implicitization of surfaces via geometric tropicalization
[18]Francois, G., Cocycles on tropical varieties via piecewise polynomials, Proc. Am. Math. Soc., 141, 2, 481-497, 2012; Francois, G., Cocycles on tropical varieties via piecewise polynomials, Proc. Am. Math. Soc., 141, 2, 481-497, 2012 ·Zbl 1295.14058
[19]Fulton, W., Introduction to Toric Varieties, Annals of Mathematics Studies, vol. 131, 1993, Princeton University Press: Princeton University Press Princeton, NJ; Fulton, W., Introduction to Toric Varieties, Annals of Mathematics Studies, vol. 131, 1993, Princeton University Press: Princeton University Press Princeton, NJ ·Zbl 0813.14039
[20]Fulton, W., Intersection Theory, 1998, Springer New York: Springer New York New York, NY; Fulton, W., Intersection Theory, 1998, Springer New York: Springer New York New York, NY ·Zbl 0885.14002
[21]Fulton, W.; Sturmfels, B., Intersection theory on toric varieties, Topology, 36, 2, 335-353, 1997; Fulton, W.; Sturmfels, B., Intersection theory on toric varieties, Topology, 36, 2, 335-353, 1997 ·Zbl 0885.14025
[22]Fulton, W.; MacPherson, R.; Sottile, F.; Sturmfels, B., Intersection theory on spherical varieties, J. Algebraic Geom., 4, 1, 181-193, 1995; Fulton, W.; MacPherson, R.; Sottile, F.; Sturmfels, B., Intersection theory on spherical varieties, J. Algebraic Geom., 4, 1, 181-193, 1995 ·Zbl 0819.14019
[23]Gallardo, P.; Kerr, M.; Schaffler, L., Geometric interpretation of toroidal compactifications of moduli of points in the line and cubic surfaces, Adv. Math., 381, 2021; Gallardo, P.; Kerr, M.; Schaffler, L., Geometric interpretation of toroidal compactifications of moduli of points in the line and cubic surfaces, Adv. Math., 381, 2021 ·Zbl 1466.14044
[24]Gathmann, A.; Schroeter, F., Irreducible cycles and points in special position in moduli spaces for tropical curves, Electron. J. Comb., 19, 4, P26, 2012; Gathmann, A.; Schroeter, F., Irreducible cycles and points in special position in moduli spaces for tropical curves, Electron. J. Comb., 19, 4, P26, 2012 ·Zbl 1328.14098
[25]Gathmann, A.; Kerber, M.; Markwig, H., Tropical fans and the moduli spaces of tropical curves, Compos. Math., 145, 1, 173-195, 2009; Gathmann, A.; Kerber, M.; Markwig, H., Tropical fans and the moduli spaces of tropical curves, Compos. Math., 145, 1, 173-195, 2009 ·Zbl 1169.51021
[26]Gonzales, R. P., Equivariant operational Chow rings of T-linear schemes, Doc. Math., 20, 401-432, 2015; Gonzales, R. P., Equivariant operational Chow rings of T-linear schemes, Doc. Math., 20, 401-432, 2015 ·Zbl 1357.14065
[27]Gross, A., Intersection theory on linear subvarieties of toric varieties, Collect. Math., 66, 2, 175-190, 2015; Gross, A., Intersection theory on linear subvarieties of toric varieties, Collect. Math., 66, 2, 175-190, 2015 ·Zbl 1328.14084
[28]Gross, A.; Shokrieh, F., Cycles, cocycles, and duality on tropical manifolds, Proc. Am. Math. Soc., 1, 2021; Gross, A.; Shokrieh, F., Cycles, cocycles, and duality on tropical manifolds, Proc. Am. Math. Soc., 1, 2021 ·Zbl 1460.14141
[29]Gubler, W., A guide to tropicalizations, (Algebraic and Combinatorial Aspects of Tropical Geometry. Algebraic and Combinatorial Aspects of Tropical Geometry, Contemp. Math., vol. 589, 2013, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 125-189; Gubler, W., A guide to tropicalizations, (Algebraic and Combinatorial Aspects of Tropical Geometry. Algebraic and Combinatorial Aspects of Tropical Geometry, Contemp. Math., vol. 589, 2013, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 125-189 ·Zbl 1318.14061
[30]Hacking, P., The homology of tropical varieties, Univ. Barc., Collect. Math., 59, 3, 263-273, 2008; Hacking, P., The homology of tropical varieties, Univ. Barc., Collect. Math., 59, 3, 263-273, 2008 ·Zbl 1198.14059
[31]Hacking, P.; Keel, S.; Tevelev, J., Compactification of the moduli space of hyperplane arrangements, J. Algebraic Geom., 15, 4, 657-680, 2006; Hacking, P.; Keel, S.; Tevelev, J., Compactification of the moduli space of hyperplane arrangements, J. Algebraic Geom., 15, 4, 657-680, 2006 ·Zbl 1117.14036
[32]Hacking, P.; Keel, S.; Tevelev, J., Stable pair, tropical, and log canonical compact moduli of del Pezzo surfaces, Invent. Math., 178, 1, 2009; Hacking, P.; Keel, S.; Tevelev, J., Stable pair, tropical, and log canonical compact moduli of del Pezzo surfaces, Invent. Math., 178, 1, 2009 ·Zbl 1205.14012
[33]Hartshorne, R., Algebraic Geometry, 1977, Springer-Verlag: Springer-Verlag New York-Heidelberg; Hartshorne, R., Algebraic Geometry, 1977, Springer-Verlag: Springer-Verlag New York-Heidelberg ·Zbl 0367.14001
[34]Helm, D.; Katz, E., Monodromy filtrations and the topology of tropical varieties, Can. J. Math., 64, 4, 845-868, 2012; Helm, D.; Katz, E., Monodromy filtrations and the topology of tropical varieties, Can. J. Math., 64, 4, 845-868, 2012 ·Zbl 1312.14145
[35]Huh, J., Combinatorial applications of the Hodge-Riemann relations, (Proceedings of the International Congress of Mathematicians (ICM 2018). Proceedings of the International Congress of Mathematicians (ICM 2018), Rio de Janeiro, Brazil, May 2019, World Scientific), 3093-3111; Huh, J., Combinatorial applications of the Hodge-Riemann relations, (Proceedings of the International Congress of Mathematicians (ICM 2018). Proceedings of the International Congress of Mathematicians (ICM 2018), Rio de Janeiro, Brazil, May 2019, World Scientific), 3093-3111 ·Zbl 1448.05016
[36]Jannsen, U., Mixed Motives and Algebraic K-Theory, 2006, Springer Berlin / Heidelberg: Springer Berlin / Heidelberg Berlin, Heidelberg; Jannsen, U., Mixed Motives and Algebraic K-Theory, 2006, Springer Berlin / Heidelberg: Springer Berlin / Heidelberg Berlin, Heidelberg
[37]Jell, P., Constructing smooth and fully faithful tropicalizations for Mumford curves, Sel. Math. New Ser., 26, 4, Article 60 pp., 2020; Jell, P., Constructing smooth and fully faithful tropicalizations for Mumford curves, Sel. Math. New Ser., 26, 4, Article 60 pp., 2020 ·Zbl 1440.14283
[38]Katz, E.; Payne, S., Piecewise polynomials, Minkowski weights, and localization on toric varieties, Algebra Number Theory, 2, 2, 135-155, 2008; Katz, E.; Payne, S., Piecewise polynomials, Minkowski weights, and localization on toric varieties, Algebra Number Theory, 2, 2, 135-155, 2008 ·Zbl 1158.14042
[39]Katz, E.; Payne, S., Realization spaces for tropical fans, Comb. Asp. Commut. Algebra Algebr. Geom., 6, 2011; Katz, E.; Payne, S., Realization spaces for tropical fans, Comb. Asp. Commut. Algebra Algebr. Geom., 6, 2011
[40]Keel, S., Intersection theory of moduli space of stable N-pointed curves of genus zero, Trans. Am. Math. Soc., 330, 2, 545, 1992; Keel, S., Intersection theory of moduli space of stable N-pointed curves of genus zero, Trans. Am. Math. Soc., 330, 2, 545, 1992 ·Zbl 0768.14002
[41]Keel, S.; Tevelev, J., Geometry of Chow quotients of Grassmannians, Duke Math. J., 134, 2, 259-311, 2006; Keel, S.; Tevelev, J., Geometry of Chow quotients of Grassmannians, Duke Math. J., 134, 2, 259-311, 2006 ·Zbl 1107.14026
[42]Kimura, S., Fractional intersection and bivariant theory, Commun. Algebra, 20, 1, 285-302, 1992; Kimura, S., Fractional intersection and bivariant theory, Commun. Algebra, 20, 1, 285-302, 1992 ·Zbl 0774.14004
[43]Liu, Q., Algebraic Geometry and Arithmetic Curves, Oxford Science Publications, vol. 6, 2002, Oxford University Press: Oxford University Press Oxford; New York; Liu, Q., Algebraic Geometry and Arithmetic Curves, Oxford Science Publications, vol. 6, 2002, Oxford University Press: Oxford University Press Oxford; New York ·Zbl 0996.14005
[44]Luxton, M.; Qu, Z., Some results on tropical compactifications, Trans. Am. Math. Soc., 363, 9, 4853-4876, 2011; Luxton, M.; Qu, Z., Some results on tropical compactifications, Trans. Am. Math. Soc., 363, 9, 4853-4876, 2011 ·Zbl 1230.14014
[45]Luxton, M. A., The log canonical compactification of the moduli space of six lines in Pˆ 2, 2008, The University of Texas at Austin: The University of Texas at Austin United States - Texas, Ph.D. thesis; Luxton, M. A., The log canonical compactification of the moduli space of six lines in Pˆ 2, 2008, The University of Texas at Austin: The University of Texas at Austin United States - Texas, Ph.D. thesis
[46]Maclagan, D.; Sturmfels, B., Introduction to Tropical Geometry, Graduate Studies in Mathematics, vol. 161, 2015, American Mathematical Society: American Mathematical Society Providence, RI; Maclagan, D.; Sturmfels, B., Introduction to Tropical Geometry, Graduate Studies in Mathematics, vol. 161, 2015, American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1321.14048
[47]Mikhalkin, G., Tropical geometry and its applications, (Sanz-Solé, M.; Soria, J.; Varona, J. L.; Verdera, J., Proceedings of the International Congress of Mathematicians. Proceedings of the International Congress of Mathematicians, Madrid, August 22-30, 2006, May 2007, European Mathematical Society Publishing House: European Mathematical Society Publishing House Zuerich, Switzerland), 827-852; Mikhalkin, G., Tropical geometry and its applications, (Sanz-Solé, M.; Soria, J.; Varona, J. L.; Verdera, J., Proceedings of the International Congress of Mathematicians. Proceedings of the International Congress of Mathematicians, Madrid, August 22-30, 2006, May 2007, European Mathematical Society Publishing House: European Mathematical Society Publishing House Zuerich, Switzerland), 827-852 ·Zbl 1103.14034
[48]Mikhalkin, G.; Rau, J., Tropical geometry, 2018; Mikhalkin, G.; Rau, J., Tropical geometry, 2018
[49]Naruki, I., Cross ratio variety as a moduli space of cubic surfaces, Proc. Lond. Math. Soc., s3-45, 1, 1-30, 1982; Naruki, I., Cross ratio variety as a moduli space of cubic surfaces, Proc. Lond. Math. Soc., s3-45, 1, 1-30, 1982 ·Zbl 0508.14005
[50]Osserman, B.; Payne, S., Lifting Tropical Intersections, 56, 2013, Documenta Mathematica; Osserman, B.; Payne, S., Lifting Tropical Intersections, 56, 2013, Documenta Mathematica
[51]Payne, S., Equivariant Chow cohomology of toric varieties, Math. Res. Lett., 13, 1, 29-41, 2006; Payne, S., Equivariant Chow cohomology of toric varieties, Math. Res. Lett., 13, 1, 29-41, 2006 ·Zbl 1094.14036
[52]Ren, Q.; Sam, S. V.; Sturmfels, B., Tropicalization of classical moduli spaces, Math. Comput. Sci., 8, 2, 119-145, 2014; Ren, Q.; Sam, S. V.; Sturmfels, B., Tropicalization of classical moduli spaces, Math. Comput. Sci., 8, 2, 119-145, 2014 ·Zbl 1305.14031
[53]Ren, Q.; Shaw, K.; Sturmfels, B., Tropicalization of del Pezzo surfaces, Adv. Math., 300, 156-189, 2016; Ren, Q.; Shaw, K.; Sturmfels, B., Tropicalization of del Pezzo surfaces, Adv. Math., 300, 156-189, 2016 ·Zbl 1375.14218
[54]Schock, N., Intersection theory of the stable pair compactification of the moduli space of six lines in the plane, Eur. J. Math., 8, 139-192, 2022; Schock, N., Intersection theory of the stable pair compactification of the moduli space of six lines in the plane, Eur. J. Math., 8, 139-192, 2022 ·Zbl 1499.14011
[55]Schock, N., Geometry of tropical compactifications of moduli spaces, May 2022, University of Georgia, Ph.D. thesis; Schock, N., Geometry of tropical compactifications of moduli spaces, May 2022, University of Georgia, Ph.D. thesis
[56]Schock, N., Moduli of weighted stable marked cubic surfaces; Schock, N., Moduli of weighted stable marked cubic surfaces
[57]Sekiguchi, J., Cross ratio varieties for root systems II: the case of the root system of type \(E_7\), Kyushu J. Math., 54, 7-37, 2000; Sekiguchi, J., Cross ratio varieties for root systems II: the case of the root system of type \(E_7\), Kyushu J. Math., 54, 7-37, 2000 ·Zbl 1040.14022
[58]Shaw, K. M., A tropical intersection product in matroidal fans, SIAM J. Discrete Math., 27, 1, 459-491, 2013; Shaw, K. M., A tropical intersection product in matroidal fans, SIAM J. Discrete Math., 27, 1, 459-491, 2013 ·Zbl 1314.14113
[59]Sturmfels, B.; Tevelev, J., Elimination theory for tropical varieties, Math. Res. Lett., 15, 3, 543-562, 2008; Sturmfels, B.; Tevelev, J., Elimination theory for tropical varieties, Math. Res. Lett., 15, 3, 543-562, 2008 ·Zbl 1157.14038
[60]Tevelev, J., Compactifications of subvarieties of tori, Am. J. Math., 129, 4, 1087-1104, 2007; Tevelev, J., Compactifications of subvarieties of tori, Am. J. Math., 129, 4, 1087-1104, 2007 ·Zbl 1154.14039
[61]The Stacks Project Authors, Stacks project, 2022; The Stacks Project Authors, Stacks project, 2022
[62]Totaro, B., Chow groups, Chow cohomology, and linear varieties, Forum Math. Sigma, 2, e17, 2014; Totaro, B., Chow groups, Chow cohomology, and linear varieties, Forum Math. Sigma, 2, e17, 2014 ·Zbl 1329.14018
[63]Wlodarczyk, J., Decomposition of birational toric maps in blow-ups and blow-downs, Trans. Am. Math. Soc., 349, 1, 373-411, 1997; Wlodarczyk, J., Decomposition of birational toric maps in blow-ups and blow-downs, Trans. Am. Math. Soc., 349, 1, 373-411, 1997 ·Zbl 0867.14005
[64]Yoshida, M., A \(W( E_6)\)-equivariant projective embedding of the moduli space of cubic surfaces; Yoshida, M., A \(W( E_6)\)-equivariant projective embedding of the moduli space of cubic surfaces
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp