Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Mirror symmetry and rigid structures of generalized \(K3\) surfaces.(English)Zbl 07966477

Summary: The present article is concerned with mirror symmetry for generalized K3 surfaces, with particular emphasis on complex and Kähler rigid structures. Inspired by the works of Dolgachev, Aspinwall-Morrison and Huybrechts, we introduce a formulation of mirror symmetry for generalized K3 surfaces by using Mukai lattice polarizations. This approach solves issues in the conventional formulations of mirror symmetry for K3 surfaces. In particular, we provide a solution to the problem of mirror symmetry for singular K3 surfaces. Along the way, we investigate complex and Kähler rigid structures of generalized K3 surfaces.

MSC:

14J33 Mirror symmetry (algebro-geometric aspects)
14J28 \(K3\) surfaces and Enriques surfaces
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category

Cite

References:

[1]Addington, N.; Thomas, R., Hodge theory and derived categories of cubic fourfolds, Duke Math. J., 163, 10, 1885-1927, 2014 ·Zbl 1309.14014
[2]Artin, M.; Zhang, J. J., Noncommutative projective schemes, Adv. Math., 109, 2, 228-287, 1994 ·Zbl 0833.14002
[3]Aspinwall, P.; Morrison, D., String theory on K3 surfaces, (Mirror symmetry, II. Mirror symmetry, II, AMS/IP Stud. Adv. Math., vol. 1, 1997), 703-716 ·Zbl 0931.14020
[4]Batyrev, V.; Borisov, L., Dual cones and mirror symmetry for generalized Calabi-Yau manifolds, (Mirror Symmetry, II. Mirror Symmetry, II, AMS/IP Stud. Adv. Math., vol. 1, 1997, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 71-86 ·Zbl 0927.14019
[5]Baumann, T.; Belmans, P.; van Garderen, O., Central curves on noncommutative surfaces
[6]Candelas, P.; Derrick, E.; Parkes, L., Generalized Calabi-Yau manifolds and the mirror of a rigid manifold, Nucl. Phys. B, 407, 1, 115-154, 1993 ·Zbl 0899.32011
[7]Dolgachev, I., Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci., 81, 3, 2599-2630, 1996, Algebraic Geometry, 4 ·Zbl 0890.14024
[8]Fan, Y.-W.; Kanazawa, A.; Yau, S.-T., Weil-Petersson geometry on the space of Bridgeland stability conditions, Commun. Anal. Geom., 29, 3, 681-706, 2021 ·Zbl 1464.32037
[9]Fan, Y.-W.; Kanazawa, A., Attractor mechanisms of moduli spaces of Calabi-Yau 3-folds, J. Geom. Phys., 185, Article 104724 pp., 2023 ·Zbl 1509.14078
[10]Hashimoto, K.; Kanazawa, A., Calabi-Yau threefolds of type K (II): mirror symmetry, Commun. Number Theory Phys., 10, 2, 157-192, 2016 ·Zbl 1352.14028
[11]Hosono, S.; Kanazawa, A., BCOV cusp forms of lattice polarized K3 surfaces, Adv. Math., 434, Article 109328 pp., 2023 ·Zbl 1541.11044
[12]Hitchin, N., Generalized Calabi-Yau manifolds, Q. J. Math. Oxf. Ser., 54, 281-308, 2003 ·Zbl 1076.32019
[13]Huybrechts, D., Generalized Calabi-Yau structures, K3 surfaces, and B-fields, Int. J. Math., 16, 13-36, 2005 ·Zbl 1120.14027
[14]Huybrechts, D., The K3 category of a cubic fourfold, Compos. Math., 153, 3, 586-620, 2017 ·Zbl 1440.14180
[15]Kanazawa, A., Non-commutative projective Calabi-Yau schemes, J. Pure Appl. Algebra, 219, 7, 2771-2780, 2015 ·Zbl 1342.14003
[16]Leung, C., Geometric aspects of mirror symmetry (with SYZ for rigid CY manifolds), (Proceedings of ICCM, 2001)
[17]Scattone, F., On the compactification of moduli spaces for algebraic K3 surfaces, Mem. Am. Math. Soc., 70, 374, 1987 ·Zbl 0633.14019
[18]Sheridan, N.; Smith, I., Homological mirror symmetry for generalized Greene-Plesser mirrors, Invent. Math., 224, 2, 627-682, 2021 ·Zbl 1506.14087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp