Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Linearization of Virasoro symmetries associated with semisimple Frobenius manifolds.(English)Zbl 07966475

Summary: For any semisimple Frobenius manifold, we prove that a tau-symmetric bihamiltonian deformation of its Principal Hierarchy admits an infinite family of linearizable Virasoro symmetries if and only if all the central invariants of the corresponding deformation of the bihamiltonian structure are equal to \(\frac{1}{24}\). As an important application of this result, we prove that the Dubrovin-Zhang hierarchy associated with the semisimple Frobenius manifold possesses a bihamiltonian structure which can be represented in terms of differential polynomials.

MSC:

53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
37K25 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with topology, geometry and differential geometry
37K30 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with infinite-dimensional Lie algebras and other algebraic structures

Cite

References:

[1]Blot, X.; Lewanski, D.; Shadrin, S., On the strong DR/DZ conjecture, 2024
[2]Brauer, O.; Buryak, A., The bihamiltonian structures of the DR/DZ hierarchies at the approximation up to genus one, Funct. Anal. Appl., 55, 272-285, 2021 ·Zbl 1486.14049
[3]Buryak, A., Double ramification cycles and integrable hierarchies, Commun. Math. Phys., 336, 1085-1107, 2015 ·Zbl 1329.14103
[4]Buryak, A.; Dubrovin, B.; Guéré, J.; Rossi, P., Tau-structure for the double ramification hierarchies, Commun. Math. Phys., 363, 191-260, 2018 ·Zbl 1431.53095
[5]Buryak, A.; Posthuma, H.; Shadrin, S., On deformations of quasi-Miura transformations and the Dubrovin-Zhang bracket, J. Geom. Phys., 62, 7, 1639-1651, 2012 ·Zbl 1242.53113
[6]Buryak, A.; Posthuma, H.; Shadrin, S., A polynomial bracket for the Dubrovin-Zhang hierarchies, J. Differ. Geom., 92, 1, 153-185, 2012 ·Zbl 1259.53079
[7]Buryak, A.; Rossi, P., Bihamiltonian structure of the DR hierarchy in the semisimple case, 2024
[8]Buryak, A.; Rossi, P.; Shadrin, S., Towards a bihamiltonian structure for the double ramification hierarchy, Lett. Math. Phys., 111, 13, 2021 ·Zbl 1461.14034
[9]Dijkgraaf, R.; Verlinde, H.; Verlinde, E., Topological strings in \(d < 1\), Nucl. Phys. B, 352, 1, 59-86, 1991
[10]Dubrovin, B., Integrable systems in topological field theory, Nucl. Phys. B, 379, 3, 627-689, 1992
[11]Dubrovin, B., Integrable systems and classification of 2-dimensional topological field theories, (Integrable Systems. Integrable Systems, Progress in Mathematics, vol. 115, 1993, Birkhäuser: Birkhäuser Boston), 313-359 ·Zbl 0824.58029
[12]Dubrovin, B., Geometry of 2D topological field theories, (Integrable Systems and Quantum Groups. Integrable Systems and Quantum Groups, Lecture Notes in Mathematics, vol. 1620, 1996, Springer: Springer Berlin), 120-348 ·Zbl 0841.58065
[13]Dubrovin, B., Painlevé transcendents in two-dimensional topological field theory, (The Painlevé Property. The Painlevé Property, CRM Series in Mathematical Physics, 1999, Springer: Springer New York), 287-412 ·Zbl 1026.34095
[14]Dubrovin, B.; Liu, S.-Q.; Zhang, Y., On Hamiltonian perturbations of hyperbolic systems of conservation laws I: quasi-triviality of bi-Hamiltonian perturbations, Commun. Pure Appl. Math., 59, 4, 559-615, 2006 ·Zbl 1108.35112
[15]Dubrovin, B.; Liu, S.-Q.; Zhang, Y., Bihamiltonian cohomologies and integrable hierarchies II: the tau structures, Commun. Math. Phys., 361, 467-524, 2018 ·Zbl 1403.37072
[16]Dubrovin, B.; Zhang, Y., Bihamiltonian hierarchies in 2d topological field theory at one-loop approximation, Commun. Math. Phys., 198, 311-361, 1998 ·Zbl 0923.58060
[17]Dubrovin, B.; Zhang, Y., Frobenius manifolds and Virasoro constraints, Sel. Math., 5, 423-466, 1999 ·Zbl 0963.81066
[18]Dubrovin, B.; Zhang, Y., Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, 2001
[19]Falqui, G.; Lorenzoni, P., Exact Poisson pencils, τ-structures and topological hierarchies, Phys. D, 241, 2178-2187, 2012 ·Zbl 1318.53102
[20]Givental, A. B., Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J., 1, 4, 551-568, 2001 ·Zbl 1008.53072
[21]Hernández Iglesias, F.; Shadrin, S., Bi-Hamiltonian recursion, Liu-Pandharipande relations, and vanishing terms of the second Dubrovin-Zhang bracket, Commun. Math. Phys., 392, 55-87, 2022 ·Zbl 1510.37102
[22]Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys., 147, 1-23, 1992 ·Zbl 0756.35081
[23]Lee, Y.-P., Invariance of tautological equations II: Gromov-Witten theory, J. Am. Math. Soc., 22, 2, 331-352, 2009 ·Zbl 1206.14078
[24]Liu, S.-Q., Lecture notes on bihamiltonian structures and their central invariants, (B-Model Gromov-Witten Theory. B-Model Gromov-Witten Theory, Trends in Mathematics, 2018, Birkhäuser: Birkhäuser Cham), 573-625 ·Zbl 1422.53002
[25]Liu, S.-Q.; Wang, Z.; Zhang, Y., Super tau-covers of bihamiltonian integrable hierarchies, J. Geom. Phys., 170, Article 104351 pp., 2021 ·Zbl 1490.37089
[26]Liu, S.-Q.; Wang, Z.; Zhang, Y., Variational bihamiltonian cohomologies and integrable hierarchies I: foundations, Commun. Math. Phys., 401, 985-1031, 2023 ·Zbl 1540.37091
[27]Liu, S.-Q.; Wang, Z.; Zhang, Y., Variational bihamiltonian cohomologies and integrable hierarchies II: Virasoro symmetries, Commun. Math. Phys., 395, 459-519, 2022 ·Zbl 1511.37079
[28]Liu, S.-Q.; Zhang, Y., Deformations of semisimple bihamiltonian structures of hydrodynamic type, J. Geom. Phys., 54, 4, 427-453, 2005 ·Zbl 1079.37058
[29]Witten, E., On the structure of the topological phase of two-dimensional gravity, Nucl. Phys. B, 340, 2-3, 281-332, 1990
[30]Witten, E., Two-dimensional gravity and intersection theory on moduli space, (Surveys in Differential Geometry. Surveys in Differential Geometry, Cambridge, 1990), 243-310 ·Zbl 0757.53049
[31]Zhang, Y., Central invariants of semisimple bihamiltonian structure, (Proceeding of the 4th International Congrss of Chinese Mathematicians III, 2008, Higher Education Press), 380-394
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp