[1] | Blot, X.; Lewanski, D.; Shadrin, S., On the strong DR/DZ conjecture, 2024 |
[2] | Brauer, O.; Buryak, A., The bihamiltonian structures of the DR/DZ hierarchies at the approximation up to genus one, Funct. Anal. Appl., 55, 272-285, 2021 ·Zbl 1486.14049 |
[3] | Buryak, A., Double ramification cycles and integrable hierarchies, Commun. Math. Phys., 336, 1085-1107, 2015 ·Zbl 1329.14103 |
[4] | Buryak, A.; Dubrovin, B.; Guéré, J.; Rossi, P., Tau-structure for the double ramification hierarchies, Commun. Math. Phys., 363, 191-260, 2018 ·Zbl 1431.53095 |
[5] | Buryak, A.; Posthuma, H.; Shadrin, S., On deformations of quasi-Miura transformations and the Dubrovin-Zhang bracket, J. Geom. Phys., 62, 7, 1639-1651, 2012 ·Zbl 1242.53113 |
[6] | Buryak, A.; Posthuma, H.; Shadrin, S., A polynomial bracket for the Dubrovin-Zhang hierarchies, J. Differ. Geom., 92, 1, 153-185, 2012 ·Zbl 1259.53079 |
[7] | Buryak, A.; Rossi, P., Bihamiltonian structure of the DR hierarchy in the semisimple case, 2024 |
[8] | Buryak, A.; Rossi, P.; Shadrin, S., Towards a bihamiltonian structure for the double ramification hierarchy, Lett. Math. Phys., 111, 13, 2021 ·Zbl 1461.14034 |
[9] | Dijkgraaf, R.; Verlinde, H.; Verlinde, E., Topological strings in \(d < 1\), Nucl. Phys. B, 352, 1, 59-86, 1991 |
[10] | Dubrovin, B., Integrable systems in topological field theory, Nucl. Phys. B, 379, 3, 627-689, 1992 |
[11] | Dubrovin, B., Integrable systems and classification of 2-dimensional topological field theories, (Integrable Systems. Integrable Systems, Progress in Mathematics, vol. 115, 1993, Birkhäuser: Birkhäuser Boston), 313-359 ·Zbl 0824.58029 |
[12] | Dubrovin, B., Geometry of 2D topological field theories, (Integrable Systems and Quantum Groups. Integrable Systems and Quantum Groups, Lecture Notes in Mathematics, vol. 1620, 1996, Springer: Springer Berlin), 120-348 ·Zbl 0841.58065 |
[13] | Dubrovin, B., Painlevé transcendents in two-dimensional topological field theory, (The Painlevé Property. The Painlevé Property, CRM Series in Mathematical Physics, 1999, Springer: Springer New York), 287-412 ·Zbl 1026.34095 |
[14] | Dubrovin, B.; Liu, S.-Q.; Zhang, Y., On Hamiltonian perturbations of hyperbolic systems of conservation laws I: quasi-triviality of bi-Hamiltonian perturbations, Commun. Pure Appl. Math., 59, 4, 559-615, 2006 ·Zbl 1108.35112 |
[15] | Dubrovin, B.; Liu, S.-Q.; Zhang, Y., Bihamiltonian cohomologies and integrable hierarchies II: the tau structures, Commun. Math. Phys., 361, 467-524, 2018 ·Zbl 1403.37072 |
[16] | Dubrovin, B.; Zhang, Y., Bihamiltonian hierarchies in 2d topological field theory at one-loop approximation, Commun. Math. Phys., 198, 311-361, 1998 ·Zbl 0923.58060 |
[17] | Dubrovin, B.; Zhang, Y., Frobenius manifolds and Virasoro constraints, Sel. Math., 5, 423-466, 1999 ·Zbl 0963.81066 |
[18] | Dubrovin, B.; Zhang, Y., Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, 2001 |
[19] | Falqui, G.; Lorenzoni, P., Exact Poisson pencils, τ-structures and topological hierarchies, Phys. D, 241, 2178-2187, 2012 ·Zbl 1318.53102 |
[20] | Givental, A. B., Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J., 1, 4, 551-568, 2001 ·Zbl 1008.53072 |
[21] | Hernández Iglesias, F.; Shadrin, S., Bi-Hamiltonian recursion, Liu-Pandharipande relations, and vanishing terms of the second Dubrovin-Zhang bracket, Commun. Math. Phys., 392, 55-87, 2022 ·Zbl 1510.37102 |
[22] | Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys., 147, 1-23, 1992 ·Zbl 0756.35081 |
[23] | Lee, Y.-P., Invariance of tautological equations II: Gromov-Witten theory, J. Am. Math. Soc., 22, 2, 331-352, 2009 ·Zbl 1206.14078 |
[24] | Liu, S.-Q., Lecture notes on bihamiltonian structures and their central invariants, (B-Model Gromov-Witten Theory. B-Model Gromov-Witten Theory, Trends in Mathematics, 2018, Birkhäuser: Birkhäuser Cham), 573-625 ·Zbl 1422.53002 |
[25] | Liu, S.-Q.; Wang, Z.; Zhang, Y., Super tau-covers of bihamiltonian integrable hierarchies, J. Geom. Phys., 170, Article 104351 pp., 2021 ·Zbl 1490.37089 |
[26] | Liu, S.-Q.; Wang, Z.; Zhang, Y., Variational bihamiltonian cohomologies and integrable hierarchies I: foundations, Commun. Math. Phys., 401, 985-1031, 2023 ·Zbl 1540.37091 |
[27] | Liu, S.-Q.; Wang, Z.; Zhang, Y., Variational bihamiltonian cohomologies and integrable hierarchies II: Virasoro symmetries, Commun. Math. Phys., 395, 459-519, 2022 ·Zbl 1511.37079 |
[28] | Liu, S.-Q.; Zhang, Y., Deformations of semisimple bihamiltonian structures of hydrodynamic type, J. Geom. Phys., 54, 4, 427-453, 2005 ·Zbl 1079.37058 |
[29] | Witten, E., On the structure of the topological phase of two-dimensional gravity, Nucl. Phys. B, 340, 2-3, 281-332, 1990 |
[30] | Witten, E., Two-dimensional gravity and intersection theory on moduli space, (Surveys in Differential Geometry. Surveys in Differential Geometry, Cambridge, 1990), 243-310 ·Zbl 0757.53049 |
[31] | Zhang, Y., Central invariants of semisimple bihamiltonian structure, (Proceeding of the 4th International Congrss of Chinese Mathematicians III, 2008, Higher Education Press), 380-394 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.