Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Three dimensional topological quantum field theory from \(U_q(\mathfrak{gl}(1 | 1))\) and \(U(1|1)\) Chern-Simons theory.(English)Zbl 07966474

Summary: We introduce an unrolled quantization \(U_q^E(\mathfrak{gl}(1 | 1))\) of the complex Lie superalgebra \(\mathfrak{gl}(1 | 1)\) and use its categories of weight modules to construct and study new three dimensional non-semisimple topological quantum field theories. These theories are defined on categories of cobordisms which are decorated by ribbon graphs and cohomology classes and take values in categories of graded super vector spaces. Computations in these theories are enabled by a detailed study of the representation theory of \(U_q^E(\mathfrak{gl}(1 | 1))\). We argue that by restricting to subcategories of integral weight modules we obtain topological quantum field theories which are mathematical models of Chern-Simons theories with gauge supergroups \(\mathfrak{psl}(1 | 1)\) and \(U(1 | 1)\) coupled to background flat \(\mathbb{C}^\times\)-connections, as studied in the physics literature by Rozansky-Saleur and Mikhaylov. In particular, we match Verlinde formulae and mapping class group actions on state spaces of non-generic tori with results in the physics literature. We also obtain explicit descriptions of state spaces of generic surfaces, including their graded dimensions, which go beyond results in the physics literature.

MSC:

81T45 Topological field theories in quantum mechanics
20G42 Quantum groups (quantized function algebras) and their representations

Cite

References:

[1]Anghel, C.; Geer, N.; Patureau-Mirand, B., Relative (pre)-modular categories from special linear Lie superalgebras, J. Algebra, 586, 479-525, 2021 ·Zbl 1517.57019
[2]Aghaei, N.; Gainutdinov, A.; Pawelkiewicz, M.; Schomerus, V., Combinatorial quantization of Chern-Simons theory I: the torus, 2018
[3]Andersen, H., Tensor products of quantized tilting modules, Commun. Math. Phys., 149, 1, 149-159, 1992 ·Zbl 0760.17004
[4]Blanchet, C.; Costantino, F.; Geer, N.; Patureau-Mirand, B., Non semi-simple \(\mathfrak{sl}(2)\) quantum invariants, spin case, Acta Math. Vietnam., 39, 4, 481-495, 2014 ·Zbl 1345.57019
[5]Blanchet, C.; Costantino, F.; Geer, N.; Patureau-Mirand, B., Non-semi-simple TQFTs, Reidemeister torsion and Kashaev’s invariants, Adv. Math., 301, 1-78, 2016 ·Zbl 1412.57025
[6]Bao, Y.; Ito, N., \( \mathfrak{gl}(1 | 1)\)-Alexander polynomial for 3-manifolds, Int. J. Math., 34, 4, Article 2350016 pp., 2023 ·Zbl 1531.57002
[7]Bar-Natan, D.; Witten, E., Perturbative expansion of Chern-Simons theory with noncompact gauge group, Commun. Math. Phys., 141, 2, 423-440, 1991 ·Zbl 0738.53041
[8]Creutzig, T.; Dimofte, T.; Garner, N.; Geer, N., A QFT for non-semisimple TQFT, Adv. Theor. Math. Phys., 28, 1, 161-405, 2024 ·Zbl 07949440
[9]Costello, K.; Gaiotto, D., Vertex operator algebras and 3d \(\mathcal{N} = 4\) gauge theories, J. High Energy Phys., 5, Article 018 pp., 2019 ·Zbl 1416.81185
[10]Costantino, F.; Gukov, S.; Putrov, P., Non-semisimple TQFT’s and BPS q-series, SIGMA, 19, Article 010 pp., 2023 ·Zbl 1520.57013
[11]Costantino, F.; Geer, N.; Patureau-Mirand, B., Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories, J. Topol., 7, 4, 1005-1053, 2014 ·Zbl 1320.57016
[12]Costantino, F.; Geer, N.; Patureau-Mirand, B., Some remarks on the unrolled quantum group of \(\mathfrak{sl}(2)\), J. Pure Appl. Algebra, 219, 8, 3238-3262, 2015 ·Zbl 1355.17010
[13]Creutzig, T.; McRae, R.; Yang, J., Tensor structure on the Kazhdan-Lusztig category for affine \(\mathfrak{gl}(1 | 1)\), Int. Math. Res. Not., 16, 12462-12515, 2022 ·Zbl 1522.17033
[14]Creutzig, T.; Ridout, D., Relating the archetypes of logarithmic conformal field theory, Nucl. Phys. B, 872, 3, 348-391, 2013 ·Zbl 1282.81157
[15](Deligne, P.; Etingof, P.; Freed, D.; Jeffrey, L.; Kazhdan, D.; Morgan, J.; Morrison, D.; Witten, E., Quantum Fields and Strings: a Course for Mathematicians, vol. 1, 2, 1999, American Mathematical Society; Providence, RI, Institute for Advanced Study (IAS): American Mathematical Society; Providence, RI, Institute for Advanced Study (IAS) Princeton, NJ) ·Zbl 0984.00503
[16]Dimofte, T.; Gukov, S.; Lenells, J.; Zagier, D., Exact results for perturbative Chern-Simons theory with complex gauge group, Commun. Number Theory Phys., 3, 2, 363-443, 2009 ·Zbl 1214.81151
[17]De Renzi, M., Non-semisimple extended topological quantum field theories, Mem. Am. Math. Soc., 277, 1364, 2022, v+161 ·Zbl 1553.57001
[18]De Renzi, M.; Geer, N.; Patureau-Mirand, B., Nonsemisimple quantum invariants and TQFTs from small and unrolled quantum groups, Algebraic Geom. Topol., 20, 7, 3377-3422, 2020 ·Zbl 1476.57023
[19]Etingof, P.; Gelaki, S.; Nikshych, D.; Ostrik, V., Tensor Categories, Mathematical Surveys and Monographs, vol. 205, 2015, American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1365.18001
[20]Frohman, C.; Nicas, A., The Alexander polynomial via topological quantum field theory, (Differential Geometry, Global Analysis, and Topology. Differential Geometry, Global Analysis, and Topology, Halifax, NS, 1990. Differential Geometry, Global Analysis, and Topology. Differential Geometry, Global Analysis, and Topology, Halifax, NS, 1990, CMS Conf. Proc., vol. 12, 1991, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 27-40 ·Zbl 0757.57013
[21]Gukov, S.; Hsin, P.-S.; Nakajima, H.; Park, S.; Pei, D.; Sopenko, N., Rozansky-Witten geometry of Coulomb branches and logarithmic knot invariants, J. Geom. Phys., 168, Article 104311 pp., 2021 ·Zbl 1471.81084
[22]Geer, N.; Kujawa, J.; Patureau-Mirand, B., Generalized trace and modified dimension functions on ribbon categories, Sel. Math. New Ser., 17, 2, 453-504, 2011 ·Zbl 1248.18006
[23]Geer, N.; Kujawa, J.; Patureau-Mirand, B., M-traces in (non-unimodular) pivotal categories, Algebr. Represent. Theory, 125, 759-776, 2022 ·Zbl 1490.18021
[24]Geer, N.; Patureau-Mirand, B., Multivariable link invariants arising from \(\mathfrak{sl}(2 | 1)\) and the Alexander polynomial, J. Pure Appl. Algebra, 210, 1, 283-298, 2007 ·Zbl 1121.57005
[25]Geer, N.; Patureau-Mirand, B., Multivariable link invariants arising from Lie superalgebras of type I, J. Knot Theory Ramif., 19, 1, 93-115, 2010 ·Zbl 1200.57010
[26]Geer, N.; Patureau-Mirand, B., The trace on projective representations of quantum groups, Lett. Math. Phys., 108, 1, 117-140, 2018 ·Zbl 1387.16027
[27]Geer, N.; Patureau-Mirand, B.; Rupert, M., Some remarks on relative modular categories, 2021
[28]Geer, N.; Patureau-Mirand, B.; Turaev, V., Modified quantum dimensions and re-normalized link invariants, Compos. Math., 145, 1, 196-212, 2009 ·Zbl 1160.81022
[29]Götz, G.; Quella, T.; Schomerus, V., The WZNW model on \(\operatorname{PSU} ( 1, 1 | 2 )\), J. High Energy Phys., 3, Article 003 pp., 2007
[30]Gukov, S., Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial, Commun. Math. Phys., 255, 3, 577-627, 2005 ·Zbl 1115.57009
[31]Gaiotto, D.; Witten, E., Janus configurations, Chern-Simons couplings, and the θ-angle in \(\mathcal{N} = 4\) super Yang-Mills theory, J. High Energy Phys., 6, Article 097 pp., 2010 ·Zbl 1290.81065
[32]Ha, N. P., Topological invariants from quantum group \(U_\xi \mathfrak{sl}(2 | 1)\) at roots of unity, Abh. Math. Semin. Univ. Hamb., 88, 1, 163-188, 2018 ·Zbl 1398.57022
[33]Ha, N. P., Anomaly-free TQFTs from the super Lie algebra \(\mathfrak{sl}(2 | 1)\), J. Knot Theory Ramif., 31, 5, Article 2250029 pp., 2022 ·Zbl 1505.57024
[34]Hennings, M., Invariants of links and 3-manifolds obtained from Hopf algebras, J. Lond. Math. Soc. (2), 54, 3, 594-624, 1996 ·Zbl 0882.57002
[35]Horne, J., Skein relations and Wilson loops in Chern-Simons gauge theory, Nucl. Phys. B, 334, 3, 669-694, 1990
[36]Kerler, T., Homology TQFT’s and the Alexander-Reidemeister invariant of 3-manifolds via Hopf algebras and skein theory, Can. J. Math., 55, 4, 766-821, 2003 ·Zbl 1083.57038
[37]Kerler, T.; Lyubashenko, V., Non-semisimple Topological Quantum Field Theories for 3-Manifolds with Corners, Lecture Notes in Mathematics, vol. 1765, 2001, Springer-Verlag: Springer-Verlag Berlin ·Zbl 0982.57013
[38]Kauffman, L.; Saleur, H., Free fermions and the Alexander-Conway polynomial, Commun. Math. Phys., 141, 2, 293-327, 1991 ·Zbl 0751.57004
[39]Kapustin, A.; Saulina, N., Chern-Simons-Rozansky-Witten topological field theory, Nucl. Phys. B, 823, 3, 403-427, 2009 ·Zbl 1196.81211
[40]Khoroshkin, S.; Tolstoy, V., Universal R-matrix for quantized (super)algebras, Commun. Math. Phys., 141, 3, 599-617, 1991 ·Zbl 0744.17015
[41]Kulish, P., Quantum Lie superalgebras and supergroups, (Problems of Modern Quantum Field Theory. Problems of Modern Quantum Field Theory, Alushta, 1989. Problems of Modern Quantum Field Theory. Problems of Modern Quantum Field Theory, Alushta, 1989, Res. Rep. Phys., 1989, Springer: Springer Berlin), 14-21
[42]Manion, A., On the decategorification of Ozsváth and Szabó’s bordered theory for knot Floer homology, Quantum Topol., 10, 1, 77-206, 2019 ·Zbl 1478.57014
[43]Mikhaylov, V., Analytic torsion, 3d mirror symmetry and supergroup Chern-Simons theories, 2015
[44]Manion, A.; Rouquier, R., Higher representations and cornered Heegaard Floer homology, 2020
[45]Mikhaylov, V.; Witten, E., Branes and supergroups, Commun. Math. Phys., 340, 2, 699-832, 2015 ·Zbl 1326.81210
[46]Prudnikov, A.; Brychkov, Y.; Marichev, O., Integrals and Series, vol. 1, 1986, Gordon & Breach Science Publishers: Gordon & Breach Science Publishers New York, Translated from the Russian and with a preface by N. M. Queen ·Zbl 0733.00004
[47]Quella, T.; Schomerus, V., Free fermion resolution of supergroup WZNW models, J. High Energy Phys., 9, Article 085 pp., 2007 ·Zbl 07987397
[48]Reshetikhin, N., Quantum supergroups, (Quantum Field Theory, Statistical Mechanics, Quantum Groups and Topology. Quantum Field Theory, Statistical Mechanics, Quantum Groups and Topology, Coral Gables, FL, 1991, 1992, World Sci. Publ.: World Sci. Publ. River Edge, NJ), 264-282 ·Zbl 0791.17013
[49]Rozansky, L.; Saleur, H., Quantum field theory for the multi-variable Alexander-Conway polynomial, Nucl. Phys. B, 376, 3, 461-509, 1992
[50]Rozansky, L.; Saleur, H., S- and T-matrices for the super \(\operatorname{U}(1, 1) \operatorname{WZW}\) model. Application to surgery and 3-manifolds invariants based on the Alexander-Conway polynomial, Nucl. Phys. B, 389, 2, 365-423, 1993
[51]Rozansky, L.; Saleur, H., Reidemeister torsion, the Alexander polynomial and \(\operatorname{U}(1, 1)\) Chern-Simons theory, J. Geom. Phys., 13, 2, 105-123, 1994 ·Zbl 0810.57018
[52]Reshetikhin, N.; Turaev, V., Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys., 127, 1, 1-26, 1990 ·Zbl 0768.57003
[53]Reshetikhin, N.; Turaev, V., Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., 103, 3, 547-597, 1991 ·Zbl 0725.57007
[54]Rozansky, L.; Witten, E., Hyper-Kähler geometry and invariants of three-manifolds, Sel. Math. New Ser., 3, 3, 401-458, 1997 ·Zbl 0908.53027
[55]Sartori, A., The Alexander polynomial as quantum invariant of links, Ark. Mat., 53, 1, 177-202, 2015 ·Zbl 1329.57021
[56]Sawin, S., Quantum groups at roots of unity and modularity, J. Knot Theory Ramif., 15, 10, 1245-1277, 2006 ·Zbl 1117.17006
[57]Tanisaki, T., Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for quantum algebras, (Infinite Analysis, Part A, B. Infinite Analysis, Part A, B, Kyoto, 1991. Infinite Analysis, Part A, B. Infinite Analysis, Part A, B, Kyoto, 1991, Adv. Ser. Math. Phys., vol. 16, 1992, World Sci. Publ.: World Sci. Publ. River Edge, NJ), 941-961 ·Zbl 0870.17007
[58]Turaev, V., Quantum Invariants of Knots and 3-Manifolds, De Gruyter Studies in Mathematics, vol. 18, 1994, Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin ·Zbl 0812.57003
[59]Turaev, V.; Wenzl, H., Quantum invariants of 3-manifolds associated with classical simple Lie algebras, Int. J. Math., 4, 2, 323-358, 1993 ·Zbl 0784.57007
[60]Viro, O., Quantum relatives of the Alexander polynomial, Algebra Anal., 18, 3, 63-157, 2006 ·Zbl 1149.57024
[61]Witten, E., Quantum field theory and the Jones polynomial, Commun. Math. Phys., 121, 3, 351-399, 1989 ·Zbl 0667.57005
[62]Witten, E., Topology-changing amplitudes in \((2 + 1)\)-dimensional gravity, Nucl. Phys. B, 323, 1, 113-140, 1989
[63]Witten, E., Quantization of Chern-Simons gauge theory with complex gauge group, Commun. Math. Phys., 137, 1, 29-66, 1991 ·Zbl 0717.53074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp