[1] | Anghel, C.; Geer, N.; Patureau-Mirand, B., Relative (pre)-modular categories from special linear Lie superalgebras, J. Algebra, 586, 479-525, 2021 ·Zbl 1517.57019 |
[2] | Aghaei, N.; Gainutdinov, A.; Pawelkiewicz, M.; Schomerus, V., Combinatorial quantization of Chern-Simons theory I: the torus, 2018 |
[3] | Andersen, H., Tensor products of quantized tilting modules, Commun. Math. Phys., 149, 1, 149-159, 1992 ·Zbl 0760.17004 |
[4] | Blanchet, C.; Costantino, F.; Geer, N.; Patureau-Mirand, B., Non semi-simple \(\mathfrak{sl}(2)\) quantum invariants, spin case, Acta Math. Vietnam., 39, 4, 481-495, 2014 ·Zbl 1345.57019 |
[5] | Blanchet, C.; Costantino, F.; Geer, N.; Patureau-Mirand, B., Non-semi-simple TQFTs, Reidemeister torsion and Kashaev’s invariants, Adv. Math., 301, 1-78, 2016 ·Zbl 1412.57025 |
[6] | Bao, Y.; Ito, N., \( \mathfrak{gl}(1 | 1)\)-Alexander polynomial for 3-manifolds, Int. J. Math., 34, 4, Article 2350016 pp., 2023 ·Zbl 1531.57002 |
[7] | Bar-Natan, D.; Witten, E., Perturbative expansion of Chern-Simons theory with noncompact gauge group, Commun. Math. Phys., 141, 2, 423-440, 1991 ·Zbl 0738.53041 |
[8] | Creutzig, T.; Dimofte, T.; Garner, N.; Geer, N., A QFT for non-semisimple TQFT, Adv. Theor. Math. Phys., 28, 1, 161-405, 2024 ·Zbl 07949440 |
[9] | Costello, K.; Gaiotto, D., Vertex operator algebras and 3d \(\mathcal{N} = 4\) gauge theories, J. High Energy Phys., 5, Article 018 pp., 2019 ·Zbl 1416.81185 |
[10] | Costantino, F.; Gukov, S.; Putrov, P., Non-semisimple TQFT’s and BPS q-series, SIGMA, 19, Article 010 pp., 2023 ·Zbl 1520.57013 |
[11] | Costantino, F.; Geer, N.; Patureau-Mirand, B., Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories, J. Topol., 7, 4, 1005-1053, 2014 ·Zbl 1320.57016 |
[12] | Costantino, F.; Geer, N.; Patureau-Mirand, B., Some remarks on the unrolled quantum group of \(\mathfrak{sl}(2)\), J. Pure Appl. Algebra, 219, 8, 3238-3262, 2015 ·Zbl 1355.17010 |
[13] | Creutzig, T.; McRae, R.; Yang, J., Tensor structure on the Kazhdan-Lusztig category for affine \(\mathfrak{gl}(1 | 1)\), Int. Math. Res. Not., 16, 12462-12515, 2022 ·Zbl 1522.17033 |
[14] | Creutzig, T.; Ridout, D., Relating the archetypes of logarithmic conformal field theory, Nucl. Phys. B, 872, 3, 348-391, 2013 ·Zbl 1282.81157 |
[15] | (Deligne, P.; Etingof, P.; Freed, D.; Jeffrey, L.; Kazhdan, D.; Morgan, J.; Morrison, D.; Witten, E., Quantum Fields and Strings: a Course for Mathematicians, vol. 1, 2, 1999, American Mathematical Society; Providence, RI, Institute for Advanced Study (IAS): American Mathematical Society; Providence, RI, Institute for Advanced Study (IAS) Princeton, NJ) ·Zbl 0984.00503 |
[16] | Dimofte, T.; Gukov, S.; Lenells, J.; Zagier, D., Exact results for perturbative Chern-Simons theory with complex gauge group, Commun. Number Theory Phys., 3, 2, 363-443, 2009 ·Zbl 1214.81151 |
[17] | De Renzi, M., Non-semisimple extended topological quantum field theories, Mem. Am. Math. Soc., 277, 1364, 2022, v+161 ·Zbl 1553.57001 |
[18] | De Renzi, M.; Geer, N.; Patureau-Mirand, B., Nonsemisimple quantum invariants and TQFTs from small and unrolled quantum groups, Algebraic Geom. Topol., 20, 7, 3377-3422, 2020 ·Zbl 1476.57023 |
[19] | Etingof, P.; Gelaki, S.; Nikshych, D.; Ostrik, V., Tensor Categories, Mathematical Surveys and Monographs, vol. 205, 2015, American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1365.18001 |
[20] | Frohman, C.; Nicas, A., The Alexander polynomial via topological quantum field theory, (Differential Geometry, Global Analysis, and Topology. Differential Geometry, Global Analysis, and Topology, Halifax, NS, 1990. Differential Geometry, Global Analysis, and Topology. Differential Geometry, Global Analysis, and Topology, Halifax, NS, 1990, CMS Conf. Proc., vol. 12, 1991, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 27-40 ·Zbl 0757.57013 |
[21] | Gukov, S.; Hsin, P.-S.; Nakajima, H.; Park, S.; Pei, D.; Sopenko, N., Rozansky-Witten geometry of Coulomb branches and logarithmic knot invariants, J. Geom. Phys., 168, Article 104311 pp., 2021 ·Zbl 1471.81084 |
[22] | Geer, N.; Kujawa, J.; Patureau-Mirand, B., Generalized trace and modified dimension functions on ribbon categories, Sel. Math. New Ser., 17, 2, 453-504, 2011 ·Zbl 1248.18006 |
[23] | Geer, N.; Kujawa, J.; Patureau-Mirand, B., M-traces in (non-unimodular) pivotal categories, Algebr. Represent. Theory, 125, 759-776, 2022 ·Zbl 1490.18021 |
[24] | Geer, N.; Patureau-Mirand, B., Multivariable link invariants arising from \(\mathfrak{sl}(2 | 1)\) and the Alexander polynomial, J. Pure Appl. Algebra, 210, 1, 283-298, 2007 ·Zbl 1121.57005 |
[25] | Geer, N.; Patureau-Mirand, B., Multivariable link invariants arising from Lie superalgebras of type I, J. Knot Theory Ramif., 19, 1, 93-115, 2010 ·Zbl 1200.57010 |
[26] | Geer, N.; Patureau-Mirand, B., The trace on projective representations of quantum groups, Lett. Math. Phys., 108, 1, 117-140, 2018 ·Zbl 1387.16027 |
[27] | Geer, N.; Patureau-Mirand, B.; Rupert, M., Some remarks on relative modular categories, 2021 |
[28] | Geer, N.; Patureau-Mirand, B.; Turaev, V., Modified quantum dimensions and re-normalized link invariants, Compos. Math., 145, 1, 196-212, 2009 ·Zbl 1160.81022 |
[29] | Götz, G.; Quella, T.; Schomerus, V., The WZNW model on \(\operatorname{PSU} ( 1, 1 | 2 )\), J. High Energy Phys., 3, Article 003 pp., 2007 |
[30] | Gukov, S., Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial, Commun. Math. Phys., 255, 3, 577-627, 2005 ·Zbl 1115.57009 |
[31] | Gaiotto, D.; Witten, E., Janus configurations, Chern-Simons couplings, and the θ-angle in \(\mathcal{N} = 4\) super Yang-Mills theory, J. High Energy Phys., 6, Article 097 pp., 2010 ·Zbl 1290.81065 |
[32] | Ha, N. P., Topological invariants from quantum group \(U_\xi \mathfrak{sl}(2 | 1)\) at roots of unity, Abh. Math. Semin. Univ. Hamb., 88, 1, 163-188, 2018 ·Zbl 1398.57022 |
[33] | Ha, N. P., Anomaly-free TQFTs from the super Lie algebra \(\mathfrak{sl}(2 | 1)\), J. Knot Theory Ramif., 31, 5, Article 2250029 pp., 2022 ·Zbl 1505.57024 |
[34] | Hennings, M., Invariants of links and 3-manifolds obtained from Hopf algebras, J. Lond. Math. Soc. (2), 54, 3, 594-624, 1996 ·Zbl 0882.57002 |
[35] | Horne, J., Skein relations and Wilson loops in Chern-Simons gauge theory, Nucl. Phys. B, 334, 3, 669-694, 1990 |
[36] | Kerler, T., Homology TQFT’s and the Alexander-Reidemeister invariant of 3-manifolds via Hopf algebras and skein theory, Can. J. Math., 55, 4, 766-821, 2003 ·Zbl 1083.57038 |
[37] | Kerler, T.; Lyubashenko, V., Non-semisimple Topological Quantum Field Theories for 3-Manifolds with Corners, Lecture Notes in Mathematics, vol. 1765, 2001, Springer-Verlag: Springer-Verlag Berlin ·Zbl 0982.57013 |
[38] | Kauffman, L.; Saleur, H., Free fermions and the Alexander-Conway polynomial, Commun. Math. Phys., 141, 2, 293-327, 1991 ·Zbl 0751.57004 |
[39] | Kapustin, A.; Saulina, N., Chern-Simons-Rozansky-Witten topological field theory, Nucl. Phys. B, 823, 3, 403-427, 2009 ·Zbl 1196.81211 |
[40] | Khoroshkin, S.; Tolstoy, V., Universal R-matrix for quantized (super)algebras, Commun. Math. Phys., 141, 3, 599-617, 1991 ·Zbl 0744.17015 |
[41] | Kulish, P., Quantum Lie superalgebras and supergroups, (Problems of Modern Quantum Field Theory. Problems of Modern Quantum Field Theory, Alushta, 1989. Problems of Modern Quantum Field Theory. Problems of Modern Quantum Field Theory, Alushta, 1989, Res. Rep. Phys., 1989, Springer: Springer Berlin), 14-21 |
[42] | Manion, A., On the decategorification of Ozsváth and Szabó’s bordered theory for knot Floer homology, Quantum Topol., 10, 1, 77-206, 2019 ·Zbl 1478.57014 |
[43] | Mikhaylov, V., Analytic torsion, 3d mirror symmetry and supergroup Chern-Simons theories, 2015 |
[44] | Manion, A.; Rouquier, R., Higher representations and cornered Heegaard Floer homology, 2020 |
[45] | Mikhaylov, V.; Witten, E., Branes and supergroups, Commun. Math. Phys., 340, 2, 699-832, 2015 ·Zbl 1326.81210 |
[46] | Prudnikov, A.; Brychkov, Y.; Marichev, O., Integrals and Series, vol. 1, 1986, Gordon & Breach Science Publishers: Gordon & Breach Science Publishers New York, Translated from the Russian and with a preface by N. M. Queen ·Zbl 0733.00004 |
[47] | Quella, T.; Schomerus, V., Free fermion resolution of supergroup WZNW models, J. High Energy Phys., 9, Article 085 pp., 2007 ·Zbl 07987397 |
[48] | Reshetikhin, N., Quantum supergroups, (Quantum Field Theory, Statistical Mechanics, Quantum Groups and Topology. Quantum Field Theory, Statistical Mechanics, Quantum Groups and Topology, Coral Gables, FL, 1991, 1992, World Sci. Publ.: World Sci. Publ. River Edge, NJ), 264-282 ·Zbl 0791.17013 |
[49] | Rozansky, L.; Saleur, H., Quantum field theory for the multi-variable Alexander-Conway polynomial, Nucl. Phys. B, 376, 3, 461-509, 1992 |
[50] | Rozansky, L.; Saleur, H., S- and T-matrices for the super \(\operatorname{U}(1, 1) \operatorname{WZW}\) model. Application to surgery and 3-manifolds invariants based on the Alexander-Conway polynomial, Nucl. Phys. B, 389, 2, 365-423, 1993 |
[51] | Rozansky, L.; Saleur, H., Reidemeister torsion, the Alexander polynomial and \(\operatorname{U}(1, 1)\) Chern-Simons theory, J. Geom. Phys., 13, 2, 105-123, 1994 ·Zbl 0810.57018 |
[52] | Reshetikhin, N.; Turaev, V., Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys., 127, 1, 1-26, 1990 ·Zbl 0768.57003 |
[53] | Reshetikhin, N.; Turaev, V., Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., 103, 3, 547-597, 1991 ·Zbl 0725.57007 |
[54] | Rozansky, L.; Witten, E., Hyper-Kähler geometry and invariants of three-manifolds, Sel. Math. New Ser., 3, 3, 401-458, 1997 ·Zbl 0908.53027 |
[55] | Sartori, A., The Alexander polynomial as quantum invariant of links, Ark. Mat., 53, 1, 177-202, 2015 ·Zbl 1329.57021 |
[56] | Sawin, S., Quantum groups at roots of unity and modularity, J. Knot Theory Ramif., 15, 10, 1245-1277, 2006 ·Zbl 1117.17006 |
[57] | Tanisaki, T., Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for quantum algebras, (Infinite Analysis, Part A, B. Infinite Analysis, Part A, B, Kyoto, 1991. Infinite Analysis, Part A, B. Infinite Analysis, Part A, B, Kyoto, 1991, Adv. Ser. Math. Phys., vol. 16, 1992, World Sci. Publ.: World Sci. Publ. River Edge, NJ), 941-961 ·Zbl 0870.17007 |
[58] | Turaev, V., Quantum Invariants of Knots and 3-Manifolds, De Gruyter Studies in Mathematics, vol. 18, 1994, Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin ·Zbl 0812.57003 |
[59] | Turaev, V.; Wenzl, H., Quantum invariants of 3-manifolds associated with classical simple Lie algebras, Int. J. Math., 4, 2, 323-358, 1993 ·Zbl 0784.57007 |
[60] | Viro, O., Quantum relatives of the Alexander polynomial, Algebra Anal., 18, 3, 63-157, 2006 ·Zbl 1149.57024 |
[61] | Witten, E., Quantum field theory and the Jones polynomial, Commun. Math. Phys., 121, 3, 351-399, 1989 ·Zbl 0667.57005 |
[62] | Witten, E., Topology-changing amplitudes in \((2 + 1)\)-dimensional gravity, Nucl. Phys. B, 323, 1, 113-140, 1989 |
[63] | Witten, E., Quantization of Chern-Simons gauge theory with complex gauge group, Commun. Math. Phys., 137, 1, 29-66, 1991 ·Zbl 0717.53074 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.