[1] | Borisov, Y. F., \( C^{1 , \alpha}\)-isometric immersions of Riemannian spaces, Dokl. Akad. Nauk SSSR (N.S.), 163, 11-13, 1965 ·Zbl 0135.40303 |
[2] | Borisov, Y. F., Irregular \(C^{1 , \beta}\)-surfaces with an analytic metric, Sib. Math. J., 45, 1, 19-52, 2004 ·Zbl 1054.53081 |
[3] | Cairns, S. S., A simple triangulation method for smooth manifolds, Bull. Am. Math. Soc., 67, 389-390, 1961, MR 149491 ·Zbl 0192.29901 |
[4] | Cartan, É., Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Ann. Soc. Pol. Math., 6, 1-7, 1928, (in French) ·JFM 54.0763.05 |
[5] | Conti, S.; De Lellis, C.; Székelyhidi, L., h-principle and rigidity for \(C^{1 , \alpha}\) isometric embeddings, (Holden, H.; Karlsen, K. H., Nonlinear Partial Differential Equations: The Abel Symposium 2010, 2012, Springer), 83-116 ·Zbl 1255.53038 |
[6] | Cao, W.; Hirsch, J.; Inauen, D., \( C^{1 , \frac{ 1}{ 3} -}\) very weak solutions to the two dimensional Monge-Ampére equation, 2023, arXiv e-prints |
[7] | Cao, W.; Inauen, D., Rigidity and flexibility of isometric extension, Comment. Math. Helv., 99, 1, 39-80, 2024 ·Zbl 07826209 |
[8] | Cao, W.; Székelyhidi, L., \( C^{1 , \alpha}\) isometric extensions, Commun. Partial Differ. Equ., 44, 7, 613-636, 2019, MR 3949128 ·Zbl 1415.53006 |
[9] | Cao, W.; Székelyhidi, L., Global Nash-Kuiper theorem for compact manifolds, J. Differ. Geom., 122, 1, 35-68, 2022, MR 4507470 ·Zbl 1511.57031 |
[10] | De Lellis, C.; Inauen, D., \( C^{1 , \alpha}\) isometric embeddings of polar caps, Adv. Math., 363, Article 106996 pp., 2020, MR 4054053 ·Zbl 1436.53006 |
[11] | De Lellis, C.; Inauen, D.; Székelyhidi, L., A Nash-Kuiper theorem for \(C^{1 , 1 / 5 - \delta}\) immersions of surfaces in 3 dimensions, Rev. Mat. Iberoam., 34, 3, 1119-1152, 2018 ·Zbl 1421.53045 |
[12] | Daneri, S.; Székelyhidi, L., Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 224, 2, 471-514, 2017 ·Zbl 1372.35221 |
[13] | Günther, M., On the perturbation problem associated to isometric embeddings of Riemannian manifolds, Ann. Glob. Anal. Geom., 7, 1, 69-77, 1989, MR 1029846 ·Zbl 0691.53006 |
[14] | Günther, M., Isometric embeddings of Riemannian manifolds, (Proceedings of the International Congress of Mathematicians, vol. I, II. Proceedings of the International Congress of Mathematicians, vol. I, II, Kyoto, 1990, 1991, Math. Soc. Japan: Math. Soc. Japan Tokyo), 1137-1143, MR 1159298 ·Zbl 0745.53031 |
[15] | Gromov, M. L.; Rohlin, V. A., Imbeddings and immersions in Riemannian geometry, Usp. Mat. Nauk, 25, 5 (155), 3-62, 1970, MR 0290390 ·Zbl 0202.21004 |
[16] | Gromov, M., Convex integration of differential relations. I, Izv. Akad. Nauk SSSR, Ser. Mat., 37, 329-343, 1973, MR 0413206 ·Zbl 0281.58004 |
[17] | Gromov, M., Partial Differential Relations, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 9, 1986, Springer Verlag: Springer Verlag Berlin ·Zbl 0651.53001 |
[18] | Gromov, M., Geometric, algebraic, and analytic descendants of Nash isometric embedding theorems, Bull. Am. Math. Soc. (N.S.), 54, 2, 173-245, 2017 ·Zbl 1379.58003 |
[19] | Han, Q.; Hong, J.-X., Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, Mathematical Surveys and Monographs, vol. 130, 2006, American Mathematical Society: American Mathematical Society Providence, RI, MR 2261749 ·Zbl 1113.53002 |
[20] | Hungerbühler, N.; Wasem, M., The one-sided isometric extension problem, Result. Math., 71, 3-4, 749-781, 2017 ·Zbl 1380.53065 |
[21] | Jacobowitz, H., Implicit function theorems and isometric embeddings, Ann. Math. (2), 95, 191-225, 1972, MR 307127 ·Zbl 0214.12904 |
[22] | Janet, M., Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Ann. Soc. Pol. Math., 5, 38-43, 1927, (in French) ·JFM 53.0699.01 |
[23] | Källén, A., Isometric embedding of a smooth compact manifold with a metric of low regularity, Ark. Mat., 16, 1, 29-50, 1978, MR 499136 ·Zbl 0381.35014 |
[24] | Kuiper, N. H., On \(C^1\)-isometric imbeddings. I, II, Ned. Akad. Wet., Indag. Math., 17, 545-556, 1955, 683-689 ·Zbl 0067.39601 |
[25] | Lewicka, M., The Monge-Ampere system: convex integration in arbitrary dimension and codimension, 2022, arXiv e-prints |
[26] | Lewicka, M., The Monge-Ampere system in dimension two: a further regularity improvement, 2024, arXiv e-prints |
[27] | Nash, J., \( C^1\) isometric imbeddings, Ann. Math. (2), 60, 3, 383-396, 1954 ·Zbl 0058.37703 |
[28] | Nash, J., The imbedding problem for Riemannian manifolds, Ann. Math., 2, 20-63, 1956 ·Zbl 0070.38603 |
[29] | Székelyhidi, L., From isometric embeddings to turbulence, (HCDTE Lecture Notes. Part II. Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations, 2014, American Institute of Mathematical Sciences), 1-66 |
[30] | Whitney, H., The self-intersections of a smooth n-manifold in 2n-space, Ann. Math. (2), 45, 220-246, 1944, MR 10274 ·Zbl 0063.08237 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.