Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the isometric version of Whitney’s strong embedding theorem.(English)Zbl 07966471

Summary: We prove a version of Whitney’s strong embedding theorem for isometric embeddings within the general setting of the Nash-Kuiper h-principle. More precisely, we show that any \(n\)-dimensional smooth compact manifold admits infinitely many global isometric embeddings into \(2n\)-dimensional Euclidean space, of Hölder class \(C^{1, \theta}\) with \(\theta < 1 / 3\) for \(n = 2\) and \(\theta < (n + 2)^{- 1}\) for \(n \geq 3\). The proof is performed by Nash-Kuiper’s convex integration construction and applying the gluing technique of the authors on short embeddings with small amplitude.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
58A07 Real-analytic and Nash manifolds

Cite

References:

[1]Borisov, Y. F., \( C^{1 , \alpha}\)-isometric immersions of Riemannian spaces, Dokl. Akad. Nauk SSSR (N.S.), 163, 11-13, 1965 ·Zbl 0135.40303
[2]Borisov, Y. F., Irregular \(C^{1 , \beta}\)-surfaces with an analytic metric, Sib. Math. J., 45, 1, 19-52, 2004 ·Zbl 1054.53081
[3]Cairns, S. S., A simple triangulation method for smooth manifolds, Bull. Am. Math. Soc., 67, 389-390, 1961, MR 149491 ·Zbl 0192.29901
[4]Cartan, É., Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Ann. Soc. Pol. Math., 6, 1-7, 1928, (in French) ·JFM 54.0763.05
[5]Conti, S.; De Lellis, C.; Székelyhidi, L., h-principle and rigidity for \(C^{1 , \alpha}\) isometric embeddings, (Holden, H.; Karlsen, K. H., Nonlinear Partial Differential Equations: The Abel Symposium 2010, 2012, Springer), 83-116 ·Zbl 1255.53038
[6]Cao, W.; Hirsch, J.; Inauen, D., \( C^{1 , \frac{ 1}{ 3} -}\) very weak solutions to the two dimensional Monge-Ampére equation, 2023, arXiv e-prints
[7]Cao, W.; Inauen, D., Rigidity and flexibility of isometric extension, Comment. Math. Helv., 99, 1, 39-80, 2024 ·Zbl 07826209
[8]Cao, W.; Székelyhidi, L., \( C^{1 , \alpha}\) isometric extensions, Commun. Partial Differ. Equ., 44, 7, 613-636, 2019, MR 3949128 ·Zbl 1415.53006
[9]Cao, W.; Székelyhidi, L., Global Nash-Kuiper theorem for compact manifolds, J. Differ. Geom., 122, 1, 35-68, 2022, MR 4507470 ·Zbl 1511.57031
[10]De Lellis, C.; Inauen, D., \( C^{1 , \alpha}\) isometric embeddings of polar caps, Adv. Math., 363, Article 106996 pp., 2020, MR 4054053 ·Zbl 1436.53006
[11]De Lellis, C.; Inauen, D.; Székelyhidi, L., A Nash-Kuiper theorem for \(C^{1 , 1 / 5 - \delta}\) immersions of surfaces in 3 dimensions, Rev. Mat. Iberoam., 34, 3, 1119-1152, 2018 ·Zbl 1421.53045
[12]Daneri, S.; Székelyhidi, L., Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 224, 2, 471-514, 2017 ·Zbl 1372.35221
[13]Günther, M., On the perturbation problem associated to isometric embeddings of Riemannian manifolds, Ann. Glob. Anal. Geom., 7, 1, 69-77, 1989, MR 1029846 ·Zbl 0691.53006
[14]Günther, M., Isometric embeddings of Riemannian manifolds, (Proceedings of the International Congress of Mathematicians, vol. I, II. Proceedings of the International Congress of Mathematicians, vol. I, II, Kyoto, 1990, 1991, Math. Soc. Japan: Math. Soc. Japan Tokyo), 1137-1143, MR 1159298 ·Zbl 0745.53031
[15]Gromov, M. L.; Rohlin, V. A., Imbeddings and immersions in Riemannian geometry, Usp. Mat. Nauk, 25, 5 (155), 3-62, 1970, MR 0290390 ·Zbl 0202.21004
[16]Gromov, M., Convex integration of differential relations. I, Izv. Akad. Nauk SSSR, Ser. Mat., 37, 329-343, 1973, MR 0413206 ·Zbl 0281.58004
[17]Gromov, M., Partial Differential Relations, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 9, 1986, Springer Verlag: Springer Verlag Berlin ·Zbl 0651.53001
[18]Gromov, M., Geometric, algebraic, and analytic descendants of Nash isometric embedding theorems, Bull. Am. Math. Soc. (N.S.), 54, 2, 173-245, 2017 ·Zbl 1379.58003
[19]Han, Q.; Hong, J.-X., Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, Mathematical Surveys and Monographs, vol. 130, 2006, American Mathematical Society: American Mathematical Society Providence, RI, MR 2261749 ·Zbl 1113.53002
[20]Hungerbühler, N.; Wasem, M., The one-sided isometric extension problem, Result. Math., 71, 3-4, 749-781, 2017 ·Zbl 1380.53065
[21]Jacobowitz, H., Implicit function theorems and isometric embeddings, Ann. Math. (2), 95, 191-225, 1972, MR 307127 ·Zbl 0214.12904
[22]Janet, M., Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Ann. Soc. Pol. Math., 5, 38-43, 1927, (in French) ·JFM 53.0699.01
[23]Källén, A., Isometric embedding of a smooth compact manifold with a metric of low regularity, Ark. Mat., 16, 1, 29-50, 1978, MR 499136 ·Zbl 0381.35014
[24]Kuiper, N. H., On \(C^1\)-isometric imbeddings. I, II, Ned. Akad. Wet., Indag. Math., 17, 545-556, 1955, 683-689 ·Zbl 0067.39601
[25]Lewicka, M., The Monge-Ampere system: convex integration in arbitrary dimension and codimension, 2022, arXiv e-prints
[26]Lewicka, M., The Monge-Ampere system in dimension two: a further regularity improvement, 2024, arXiv e-prints
[27]Nash, J., \( C^1\) isometric imbeddings, Ann. Math. (2), 60, 3, 383-396, 1954 ·Zbl 0058.37703
[28]Nash, J., The imbedding problem for Riemannian manifolds, Ann. Math., 2, 20-63, 1956 ·Zbl 0070.38603
[29]Székelyhidi, L., From isometric embeddings to turbulence, (HCDTE Lecture Notes. Part II. Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations, 2014, American Institute of Mathematical Sciences), 1-66
[30]Whitney, H., The self-intersections of a smooth n-manifold in 2n-space, Ann. Math. (2), 45, 220-246, 1944, MR 10274 ·Zbl 0063.08237
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp