[1] | Athreya, J., Logarithm laws and shrinking target properties, Proc. Indian Acad. Sci. Math. Sci., 119, 4, 541-557, 2009 ·Zbl 1184.37004 |
[2] | Baker, S.; Farmer, M., Quantitative recurrence properties for self-conformal sets, Proc. Am. Math. Soc., 149, 3, 1127-1138, 2021 ·Zbl 1458.28002 |
[3] | Barreira, L.; Saussol, B., Hausdorff dimension of measures via Poincaré recurrence, Commun. Math. Phys., 219, 2, 443-463, 2001 ·Zbl 1007.37012 |
[4] | Beresnevich, V.; Dickinson, D.; Velani, S., Measure theoretic laws for lim sup sets, Mem. Am. Math. Soc., 179, 846, 2006, x+91 pp. ·Zbl 1129.11031 |
[5] | Beresnevich, V.; Velani, S., A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. Math. (2), 164, 3, 971-992, 2006 ·Zbl 1148.11033 |
[6] | Billingsley, P., Probability and Measure, Wiley Series in Probability and Mathematical Statistics, 1995, A Wiley-Interscience Publication, John Wiley & Sons, Inc.: A Wiley-Interscience Publication, John Wiley & Sons, Inc. New York ·Zbl 0822.60002 |
[7] | Boshernitzan, M., Quantitative recurrence results, Invent. Math., 113, 3, 617-631, 1993 ·Zbl 0839.28008 |
[8] | Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, vol. 470, 2008, Springer-Verlag: Springer-Verlag Berlin ·Zbl 1172.37001 |
[9] | Chang, Y.; Wu, M.; Wu, W., Quantitative recurrence properties and homogeneous self-similar sets, Proc. Am. Math. Soc., 147, 4, 1453-1465, 2019 ·Zbl 1431.28008 |
[10] | Chazottes, J.-R.; Ugalde, E., Entropy estimation and fluctuations of hitting and recurrence times for Gibbsian sources, Discrete Contin. Dyn. Syst., Ser. B, 5, 3, 565-586, 2005 ·Zbl 1085.37004 |
[11] | Chernov, N.; Kleinbock, D., Dynamical Borel-Cantelli lemmas for Gibbs measures, Isr. J. Math., 122, 1-27, 2001 ·Zbl 0997.37002 |
[12] | Denker, M.; Philipp, W., Approximation by Brownian motion for Gibbs measures and flows under a function, Ergod. Theory Dyn. Syst., 4, 4, 541-552, 1984 ·Zbl 0554.60077 |
[13] | Einsiedler, M.; Ward, T., Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, vol. 259, 2011, Springer-Verlag London, Ltd.: Springer-Verlag London, Ltd. London, xviii+481 pp. ·Zbl 1206.37001 |
[14] | Falconer, K., Fractal Geometry. Mathematical Foundations and Applications, 2014, John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. Chichester, xxx+368 pp. ·Zbl 1285.28011 |
[15] | Harman, G., Metric Number Theory, London Mathematical Society Monographs. New Series, vol. 18, 1998, The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York, xviii+297 pp. ·Zbl 1081.11057 |
[16] | Hill, R.; Velani, S., The ergodic theory of shrinking targets, Invent. Math., 119, 1, 175-198, 1995 ·Zbl 0834.28009 |
[17] | Hill, R.; Velani, S., The shrinking target problem for matrix transformations of tori, J. Lond. Math. Soc. (2), 60, 2, 381-398, 1999 ·Zbl 0987.37008 |
[18] | Hussain, M.; Li, B.; Simmons, D.; Wang, B., Dynamical Borel-Cantelli lemma for recurrence theory, Ergod. Theory Dyn. Syst., 42, 6, 1994-2008, 2022 ·Zbl 1507.37001 |
[19] | Hutchinson, J., Fractals and self-similarity, Indiana Univ. Math. J., 30, 5, 713-747, 1981 ·Zbl 0598.28011 |
[20] | Jordan, T.; Pollicott, M., Multifractal analysis and the variance of Gibbs measures, J. Lond. Math. Soc., 76, 1, 57-72, 2007 ·Zbl 1145.28004 |
[21] | Katok, A.; Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, 1995, Cambridge University Press: Cambridge University Press Cambridge, xviii+802 pp. ·Zbl 0878.58020 |
[22] | Kelmer, D.; Yu, S., Shrinking target problems for flows on homogeneous spaces, Trans. Am. Math. Soc., 372, 9, 6283-6314, 2019 ·Zbl 1426.37006 |
[23] | Kirsebom, M.; Kunde, P.; Persson, T., On shrinking targets and self-returning points, Ann. Sc. Norm. Super. Pisa, Cl. Sci., XXIV, 3, 2023 ·Zbl 1532.37018 |
[24] | D. Kleinbock, J. Zheng, Dynamical Borel-Cantelli lemma for recurrence under Lipschitz twists, Nonlinearity 36, 2. ·Zbl 1514.37013 |
[25] | Li, B.; Liao, L.; Velani, S.; Zorin, E.; Wang, B., The shrinking target problem for matrix transformations of tori: revisiting the standard problem, Adv. Math., 421, Article 108994 pp., 2023 ·Zbl 1531.11069 |
[26] | Mattila, P., Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, vol. 44, 1995, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0819.28004 |
[27] | Parry, W.; Pollicott, M., Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187-188, 1-268, 1990 ·Zbl 0726.58003 |
[28] | Petersen, K., Ergodic Theory, Cambridge Studies in Advanced Mathematics, vol. 2, 1983, Cambridge University Press: Cambridge University Press Cambridge, xii+329 pp. ·Zbl 0507.28010 |
[29] | Seuret, S.; Wang, B., Quantitative recurrence properties in conformal iterated function systems, Adv. Math., 280, 472-505, 2015 ·Zbl 1319.11050 |
[30] | Tan, B.; Wang, B., Quantitative recurrence properties of beta dynamical systems, Adv. Math., 228, 2071-2097, 2011 ·Zbl 1284.11113 |
[31] | Walters, P., An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79, 1982, Springer-Verlag: Springer-Verlag New York-Berlin ·Zbl 0475.28009 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.