Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Recurrence rates for shifts of finite type.(English)Zbl 07966470

Summary: Let \(\Sigma_A\) be a topologically mixing shift of finite type, let \(\sigma : \Sigma_A \to \Sigma_A\) be the usual left-shift, and let \(\mu\) be the Gibbs measure for a Hölder continuous potential that is not cohomologous to a constant. In this paper we study recurrence rates for the dynamical system \((\Sigma_A, \sigma)\) that hold \(\mu\)-almost surely. In particular, given a function \(\psi : \mathbb{N} \to \mathbb{N}\) we are interested in the following set\[R_\psi = \{\mathtt{i} \in \Sigma_A : i_{n + 1} \dots i_{n + \psi (n) + 1} = i_1 \dots i_{\psi (n)}\text{ for infinitely many } n \in \mathbb{N}\}.\]We provide sufficient conditions for \(\mu(R_\psi) = 1\) and sufficient conditions for \(\mu(R_\psi) = 0\). As a corollary of these results, we discover a new critical threshold where the measure of \(R_\psi\) transitions from zero to one. This threshold was previously unknown even in the special case of a non-uniform Bernoulli measure defined on the full shift. The proofs of our results combine ideas from Probability Theory and Thermodynamic Formalism. In our final section we apply our results to the study of dynamics on self-similar sets.

MSC:

28Axx Classical measure theory
37Axx Ergodic theory
11Kxx Probabilistic theory: distribution modulo \(1\); metric theory of algorithms

Cite

References:

[1]Athreya, J., Logarithm laws and shrinking target properties, Proc. Indian Acad. Sci. Math. Sci., 119, 4, 541-557, 2009 ·Zbl 1184.37004
[2]Baker, S.; Farmer, M., Quantitative recurrence properties for self-conformal sets, Proc. Am. Math. Soc., 149, 3, 1127-1138, 2021 ·Zbl 1458.28002
[3]Barreira, L.; Saussol, B., Hausdorff dimension of measures via Poincaré recurrence, Commun. Math. Phys., 219, 2, 443-463, 2001 ·Zbl 1007.37012
[4]Beresnevich, V.; Dickinson, D.; Velani, S., Measure theoretic laws for lim sup sets, Mem. Am. Math. Soc., 179, 846, 2006, x+91 pp. ·Zbl 1129.11031
[5]Beresnevich, V.; Velani, S., A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. Math. (2), 164, 3, 971-992, 2006 ·Zbl 1148.11033
[6]Billingsley, P., Probability and Measure, Wiley Series in Probability and Mathematical Statistics, 1995, A Wiley-Interscience Publication, John Wiley & Sons, Inc.: A Wiley-Interscience Publication, John Wiley & Sons, Inc. New York ·Zbl 0822.60002
[7]Boshernitzan, M., Quantitative recurrence results, Invent. Math., 113, 3, 617-631, 1993 ·Zbl 0839.28008
[8]Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, vol. 470, 2008, Springer-Verlag: Springer-Verlag Berlin ·Zbl 1172.37001
[9]Chang, Y.; Wu, M.; Wu, W., Quantitative recurrence properties and homogeneous self-similar sets, Proc. Am. Math. Soc., 147, 4, 1453-1465, 2019 ·Zbl 1431.28008
[10]Chazottes, J.-R.; Ugalde, E., Entropy estimation and fluctuations of hitting and recurrence times for Gibbsian sources, Discrete Contin. Dyn. Syst., Ser. B, 5, 3, 565-586, 2005 ·Zbl 1085.37004
[11]Chernov, N.; Kleinbock, D., Dynamical Borel-Cantelli lemmas for Gibbs measures, Isr. J. Math., 122, 1-27, 2001 ·Zbl 0997.37002
[12]Denker, M.; Philipp, W., Approximation by Brownian motion for Gibbs measures and flows under a function, Ergod. Theory Dyn. Syst., 4, 4, 541-552, 1984 ·Zbl 0554.60077
[13]Einsiedler, M.; Ward, T., Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, vol. 259, 2011, Springer-Verlag London, Ltd.: Springer-Verlag London, Ltd. London, xviii+481 pp. ·Zbl 1206.37001
[14]Falconer, K., Fractal Geometry. Mathematical Foundations and Applications, 2014, John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. Chichester, xxx+368 pp. ·Zbl 1285.28011
[15]Harman, G., Metric Number Theory, London Mathematical Society Monographs. New Series, vol. 18, 1998, The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York, xviii+297 pp. ·Zbl 1081.11057
[16]Hill, R.; Velani, S., The ergodic theory of shrinking targets, Invent. Math., 119, 1, 175-198, 1995 ·Zbl 0834.28009
[17]Hill, R.; Velani, S., The shrinking target problem for matrix transformations of tori, J. Lond. Math. Soc. (2), 60, 2, 381-398, 1999 ·Zbl 0987.37008
[18]Hussain, M.; Li, B.; Simmons, D.; Wang, B., Dynamical Borel-Cantelli lemma for recurrence theory, Ergod. Theory Dyn. Syst., 42, 6, 1994-2008, 2022 ·Zbl 1507.37001
[19]Hutchinson, J., Fractals and self-similarity, Indiana Univ. Math. J., 30, 5, 713-747, 1981 ·Zbl 0598.28011
[20]Jordan, T.; Pollicott, M., Multifractal analysis and the variance of Gibbs measures, J. Lond. Math. Soc., 76, 1, 57-72, 2007 ·Zbl 1145.28004
[21]Katok, A.; Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, 1995, Cambridge University Press: Cambridge University Press Cambridge, xviii+802 pp. ·Zbl 0878.58020
[22]Kelmer, D.; Yu, S., Shrinking target problems for flows on homogeneous spaces, Trans. Am. Math. Soc., 372, 9, 6283-6314, 2019 ·Zbl 1426.37006
[23]Kirsebom, M.; Kunde, P.; Persson, T., On shrinking targets and self-returning points, Ann. Sc. Norm. Super. Pisa, Cl. Sci., XXIV, 3, 2023 ·Zbl 1532.37018
[24]D. Kleinbock, J. Zheng, Dynamical Borel-Cantelli lemma for recurrence under Lipschitz twists, Nonlinearity 36, 2. ·Zbl 1514.37013
[25]Li, B.; Liao, L.; Velani, S.; Zorin, E.; Wang, B., The shrinking target problem for matrix transformations of tori: revisiting the standard problem, Adv. Math., 421, Article 108994 pp., 2023 ·Zbl 1531.11069
[26]Mattila, P., Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, vol. 44, 1995, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0819.28004
[27]Parry, W.; Pollicott, M., Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187-188, 1-268, 1990 ·Zbl 0726.58003
[28]Petersen, K., Ergodic Theory, Cambridge Studies in Advanced Mathematics, vol. 2, 1983, Cambridge University Press: Cambridge University Press Cambridge, xii+329 pp. ·Zbl 0507.28010
[29]Seuret, S.; Wang, B., Quantitative recurrence properties in conformal iterated function systems, Adv. Math., 280, 472-505, 2015 ·Zbl 1319.11050
[30]Tan, B.; Wang, B., Quantitative recurrence properties of beta dynamical systems, Adv. Math., 228, 2071-2097, 2011 ·Zbl 1284.11113
[31]Walters, P., An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79, 1982, Springer-Verlag: Springer-Verlag New York-Berlin ·Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp