Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Prime orthogeodesics, concave cores and families of identities on hyperbolic surfaces.(English)Zbl 07966463

Summary: We prove and explore a family of identities relating lengths of curves and orthogeodesics of hyperbolic surfaces. These identities hold over a large space of metrics including ones with hyperbolic cone points, and in particular, show how to extend a result of the first author to surfaces with cusps. One of the main ingredients in the approach is a partition of the set of orthogeodesics into sets depending on their dynamical behavior, which can be understood geometrically by relating them to geodesics on orbifold surfaces. These orbifold surfaces turn out to be exactly on the boundary of the space in which the underlying identity holds.

MSC:

32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
57K20 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.)
30F60 Teichmüller theory for Riemann surfaces
37E35 Flows on surfaces
53C22 Geodesics in global differential geometry

Cite

References:

[1]Basmajian, A., The orthogonal spectrum of a hyperbolic manifold, Am. J. Math., 115, 5, 1139-1159, 1993 ·Zbl 0794.30032
[2]Bridgeman, M., Orthospectra of geodesic laminations and dilogarithm identities on moduli space, Geom. Topol., 15, 2, 707-733, 2011 ·Zbl 1226.32007
[3]Bridgeman, M.; Tan, S. P., Moments of the boundary hitting function for the geodesic flow on a hyperbolic manifold, Geom. Topol., 18, 1, 491-520, 2014 ·Zbl 1290.32028
[4]Bridgeman, M.; Tan, S. P., Identities on hyperbolic manifolds, (Handbook of Teichmüller Theory, vol. V. Handbook of Teichmüller Theory, vol. V, IRMA Lect. Math. Theor. Phys., vol. 26, 2016, Eur. Math. Soc.: Eur. Math. Soc. Zürich), 19-53 ·Zbl 1344.30034
[5]Buser, P., Geometry and Spectra of Compact Riemann Surfaces, Progress in Mathematics, vol. 106, 1992, Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA ·Zbl 0770.53001
[6]Calegari, D., Chimneys, leopard spots and the identities of Basmajian and Bridgeman, Algebraic Geom. Topol., 10, 3, 1857-1863, 2010 ·Zbl 1196.57010
[7]Charette, V.; Goldman, W. M., McShane-type identities for affine deformations, Ann. Inst. Fourier (Grenoble), 67, 5, 2029-2041, 2017 ·Zbl 1405.57003
[8]Dryden, E. B.; Parlier, H., Collars and partitions of hyperbolic cone-surfaces, Geom. Dedic., 127, 139-149, 2007 ·Zbl 1130.53030
[9]Erlandsson, V.; Souto, J., Mirzakhani’s Curve Counting and Geodesic Currents, Progress in Mathematics, vol. 345, 2022, Birkhäuser/Springer: Birkhäuser/Springer Cham, xii+226 pp ·Zbl 1514.32003
[10]Fanoni, F.; Pozzetti, M. B., Basmajian-type inequalities for maximal representations, J. Differ. Geom., 116, 3, 405-458, 2020 ·Zbl 1461.53041
[11]He, Y. M., Basmajian-type identities and Hausdorff dimension of limit sets, Ergod. Theory Dyn. Syst., 38, 6, 2224-2244, 2018 ·Zbl 1397.37048
[12]Y.M. He, Prime number theorems for Basmajian-type identities, Arxiv preprint, 2018.
[13]Martin, K.; McKee, M.; Wambach, E., A relative trace formula for a compact Riemann surface, Int. J. Number Theory, 7, 2, 389-429, 2011 ·Zbl 1314.11040
[14]Luo, F.; Tan, S. P., A dilogarithm identity on moduli spaces of curves, J. Differ. Geom., 97, 2, 255-274, 2014 ·Zbl 1293.30082
[15]Hu, H.; Tan, S. P., New identities for small hyperbolic surfaces, Bull. Lond. Math. Soc., 46, 5, 1021-1031, 2014 ·Zbl 1300.30084
[16]McShane, G., Simple geodesics and a series constant over Teichmüller space, Invent. Math., 132, 3, 607-632, 1998 ·Zbl 0916.30039
[17]Mirzakhani, M., Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math., 167, 1, 179-222, 2007 ·Zbl 1125.30039
[18]Mirzakhani, M., Growth of the number of simple closed geodesics on hyperbolic surfaces, Ann. Math. (2), 168, 1, 97-125, 2008 ·Zbl 1177.37036
[19]Parkkonen, J.; Paulin, F., Counting common perpendicular arcs in negative curvature, Ergod. Theory Dyn. Syst., 37, 3, 900-938, 2017 ·Zbl 1375.37104
[20]Tan, S. P.; Wong, Y. L.; Zhang, Y., Generalizations of McShane’s identity to hyperbolic cone-surfaces, J. Differ. Geom., 72, 1, 73-112, 2006 ·Zbl 1097.53031
[21]Troyanov, M., Prescribing curvature on compact surfaces with conical singularities, Trans. Am. Math. Soc., 324, 2, 793-821, 1991 ·Zbl 0724.53023
[22]Vlamis, N. G.; Yarmola, A., Basmajian’s identity in higher Teichmüller-Thurston theory, J. Topol., 10, 3, 744-764, 2017 ·Zbl 1376.32016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp