Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Subspace configurations and low degree points on curves.(English)Zbl 07966462

Summary: This paper is devoted to understanding curves \(X\) over a number field \(k\) that possess infinitely many solutions in extensions of \(k\) of degree at most \(d\); such solutions are the titular low degree points. For \(d = 2, 3\) it is known ([9], [2]) that such curves, after a base change to \(\overline{k}\), admit a map of degree at most \(d\) onto \(\mathbb{P}^1\) or an elliptic curve. For \(d \geqslant 4\) the analogous statement was shown to be false [3]. We prove that once the genus of \(X\) is high enough, the low degree points still have geometric origin: they can be obtained as pullbacks of low degree points from a lower genus curve. We introduce a discrete-geometric invariant attached to such curves: a family of subspace configurations, with many interesting properties. This structure gives a natural alternative construction of curves from [3]. As an application of our methods, we obtain a classification of such curves over \(k\) for \(d = 2, 3\), and a classification over \(\overline{k}\) for \(d = 4, 5\).

MSC:

11G30 Curves of arbitrary genus or genus \(\ne 1\) over global fields
14H25 Arithmetic ground fields for curves
14H51 Special divisors on curves (gonality, Brill-Noether theory)

Cite

References:

[1]Arbarello, E.; Cornalba, M.; Griffiths, P. A.; Harris, J., Geometry of Algebraic Curves. Vol. I, Grundlehren der mathematischen Wissenschaften, vol. 267, 1985, Springer-Verlag: Springer-Verlag New York ·Zbl 0559.14017
[2]Abramovich, D.; Harris, J., Abelian varieties and curves in \(W_d(C)\), Compos. Math., 78, 2, 227-238, 1991 ·Zbl 0748.14010
[3]Debarre, O.; Fahlaoui, R., Abelian varieties in \(W_d^r(C)\) and points of bounded degree on algebraic curves, Compos. Math., 88, 3, 235-249, 1993 ·Zbl 0808.14025
[4]Debarre, O.; Klassen, M. J., Points of low degree on smooth plane curves, J. Reine Angew. Math., 1994, 446, 81-88, 1994 ·Zbl 0784.14014
[5]Faltings, G., Diophantine approximation on abelian varieties, Ann. Math., 133, 3, 549-576, 1991 ·Zbl 0734.14007
[6]Frey, G., Curves with infinitely many points of fixed degree, Isr. J. Math., 85, 1, 79-83, 1994 ·Zbl 0808.14022
[7]Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, 1977, Springer-Verlag: Springer-Verlag New York-Heidelberg ·Zbl 0367.14001
[8]Hindry, M., Points quadratiques sur les courbes, C. R. Math. Acad. Sci. Paris, 305, 219-221, 1987 ·Zbl 0677.14005
[9]Harris, J.; Silverman, J., Bielliptic curves and symmetric products, Proc. Am. Math. Soc., 112, 2, 347-356, 1991 ·Zbl 0727.11023
[10]Kani, E., Bounds on the number of non-rational subfields of a function field, Invent. Math., 85, 1, 185-198, 1986 ·Zbl 0615.12017
[11]Kelly, L. M.; Nwankpa, S., Affine embeddings of Sylverter-Gallai designs, J. Comb. Theory, Ser. A, 14, 3, 422-438, 1973 ·Zbl 0282.05018
[12]Levin, A., Vojta’s inequality and rational and integral points of bounded degree on curves, Compos. Math., 143, 1, 73-81, 2007 ·Zbl 1169.11026
[13]Levin, A., Integral points of bounded degree on affine curves, Compos. Math., 152, 4, 754-768, 2016 ·Zbl 1380.11082
[14]McQuillan, M., Quelques compléments à une démonstration de Faltings, C. R. Acad. Sci. Paris, Ser. I, 319, 649-652, 1994 ·Zbl 0823.14010
[15]Reichstein, Z.; Youssin, B., Essential dimensions of algebraic groups and a resolution theorem for G-varieties, Can. J. Math., 52, 5, 1018-1056, 2000, With an appendix by János Kollár and Endre Szabó ·Zbl 1044.14023
[16]Song, X.; Tucker, T., Arithmetic discriminants and morphisms of curves, Trans. Am. Math. Soc., 353, 5, 1921-1936, 2001 ·Zbl 0982.11035
[17]Smith, G.; Vogt, I., Low degree points on curves, Int. Math. Res. Not., 06, 2020
[18]Vojta, P., Arithmetic discriminants and quadratic points on curves, (Arithmetic Algebraic Geometry, 1991, Springer), 359-376 ·Zbl 0749.14018
[19]Vojta, P., A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing, J. Am. Math. Soc., 5, 4, 763-804, 1992 ·Zbl 0778.11037
[20]Viray, B.; Vogt, I., Isolated and parameterized points on curves, 2024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp