[1] | Abramovich, Dan; Cadman, Charles; Wise, Jonathan, Relative and orbifold Gromov-Witten invariants, Algebr. Geom., 4, 4, 472, 2017; Abramovich, Dan; Cadman, Charles; Wise, Jonathan, Relative and orbifold Gromov-Witten invariants, Algebr. Geom., 4, 4, 472, 2017 ·Zbl 1493.14093 ·doi:10.14231/ag-2017-025 |
[2] | Alim, Murad; Movasati, Hossein; Scheidegger, Emanuel; Yau, Shing-Tung, Gauss-Manin connection in disguise : Calabi-Yau threefolds, Comm. Math. Phys., 344, 3, 889, 2016; Alim, Murad; Movasati, Hossein; Scheidegger, Emanuel; Yau, Shing-Tung, Gauss-Manin connection in disguise : Calabi-Yau threefolds, Comm. Math. Phys., 344, 3, 889, 2016 ·Zbl 1348.14103 ·doi:10.1007/s00220-016-2640-9 |
[3] | Argüz, Hülya; Bousseau, Pierrick; Pandharipande, Rahul; Zvonkine, Dimitri, Gromov-Witten theory of complete intersections via nodal invariants, J. Topol., 16, 1, 264, 2023; Argüz, Hülya; Bousseau, Pierrick; Pandharipande, Rahul; Zvonkine, Dimitri, Gromov-Witten theory of complete intersections via nodal invariants, J. Topol., 16, 1, 264, 2023 ·Zbl 1525.14068 ·doi:10.1112/topo.12284 |
[4] | Bae, Younghan; Buelles, Tim-Henrik, Curves on K3 surfaces in divisibility 2, Forum Math. Sigma, 9, 2021; Bae, Younghan; Buelles, Tim-Henrik, Curves on K3 surfaces in divisibility 2, Forum Math. Sigma, 9, 2021 ·Zbl 1468.14094 ·doi:10.1017/fms.2021.6 |
[5] | Bae, Younghan; Schmitt, Johannes, Chow rings of stacks of prestable curves, I, Forum Math. Sigma, 10, 2022; Bae, Younghan; Schmitt, Johannes, Chow rings of stacks of prestable curves, I, Forum Math. Sigma, 10, 2022 ·Zbl 1504.14053 ·doi:10.1017/fms.2022.21 |
[6] | Bae, Younghan; Holmes, David; Pandharipande, Rahul; Schmitt, Johannes; Schwarz, Rosa, Pixton’s formula and Abel-Jacobi theory on the Picard stack, Acta Math., 230, 2, 205, 2023; Bae, Younghan; Holmes, David; Pandharipande, Rahul; Schmitt, Johannes; Schwarz, Rosa, Pixton’s formula and Abel-Jacobi theory on the Picard stack, Acta Math., 230, 2, 205, 2023 ·Zbl 1554.14058 ·doi:10.4310/acta.2023.v230.n2.a1 |
[7] | Beauville, Arnaud, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom., 18, 4, 755, 1983; Beauville, Arnaud, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom., 18, 4, 755, 1983 ·Zbl 0537.53056 |
[8] | Behrend, K., Gromov-Witten invariants in algebraic geometry, Invent. Math., 127, 3, 601, 1997; Behrend, K., Gromov-Witten invariants in algebraic geometry, Invent. Math., 127, 3, 601, 1997 ·Zbl 0909.14007 ·doi:10.1007/s002220050132 |
[9] | Behrend, K., The product formula for Gromov-Witten invariants, J. Algebraic Geom., 8, 3, 529, 1999; Behrend, K., The product formula for Gromov-Witten invariants, J. Algebraic Geom., 8, 3, 529, 1999 ·Zbl 0938.14032 |
[10] | Behrend, K.; Fantechi, B., The intrinsic normal cone, Invent. Math., 128, 1, 45, 1997; Behrend, K.; Fantechi, B., The intrinsic normal cone, Invent. Math., 128, 1, 45, 1997 ·Zbl 0909.14006 ·doi:10.1007/s002220050136 |
[11] | Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Holomorphic anomalies in topological field theories, Nuclear Phys. B, 405, 2-3, 279, 1993; Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Holomorphic anomalies in topological field theories, Nuclear Phys. B, 405, 2-3, 279, 1993 ·Zbl 0908.58074 ·doi:10.1016/0550-3213(93)90548-4 |
[12] | Bloch, Spencer; Okounkov, Andrei, The character of the infinite wedge representation, Adv. Math., 149, 1, 1, 2000; Bloch, Spencer; Okounkov, Andrei, The character of the infinite wedge representation, Adv. Math., 149, 1, 1, 2000 ·Zbl 0978.17016 ·doi:10.1006/aima.1999.1845 |
[13] | Bousseau, Pierrick; Fan, Honglu; Guo, Shuai; Wu, Longting, Holomorphic anomaly equation for (ℙ2,E) and the Nekrasov-Shatashvili limit of local ℙ2, Forum Math. Pi, 9, 2021; Bousseau, Pierrick; Fan, Honglu; Guo, Shuai; Wu, Longting, Holomorphic anomaly equation for (ℙ2,E) and the Nekrasov-Shatashvili limit of local ℙ2, Forum Math. Pi, 9, 2021 ·Zbl 1483.14098 ·doi:10.1017/fmp.2021.3 |
[14] | Bryan, Jim; Leung, Naichung Conan, The enumerative geometry of K3 surfaces and modular forms, J. Amer. Math. Soc., 13, 2, 371, 2000; Bryan, Jim; Leung, Naichung Conan, The enumerative geometry of K3 surfaces and modular forms, J. Amer. Math. Soc., 13, 2, 371, 2000 ·Zbl 0963.14031 ·doi:10.1090/S0894-0347-00-00326-X |
[15] | Bryan, Jim; Oberdieck, Georg, CHL Calabi-Yau threefolds : curve counting, Mathieu moonshine and Siegel modular forms, Commun. Number Theory Phys., 14, 4, 785, 2020; Bryan, Jim; Oberdieck, Georg, CHL Calabi-Yau threefolds : curve counting, Mathieu moonshine and Siegel modular forms, Commun. Number Theory Phys., 14, 4, 785, 2020 ·Zbl 1479.14071 ·doi:10.4310/CNTP.2020.v14.n4.a3 |
[16] | Bryan, Jim; Pandharipande, Rahul, The local Gromov-Witten theory of curves, J. Amer. Math. Soc., 21, 1, 101, 2008; Bryan, Jim; Pandharipande, Rahul, The local Gromov-Witten theory of curves, J. Amer. Math. Soc., 21, 1, 101, 2008 ·Zbl 1126.14062 ·doi:10.1090/S0894-0347-06-00545-5 |
[17] | Bryan, Jim; Oberdieck, Georg; Pandharipande, Rahul; Yin, Qizheng, Curve counting on abelian surfaces and threefolds, Algebr. Geom., 5, 4, 398, 2018; Bryan, Jim; Oberdieck, Georg; Pandharipande, Rahul; Yin, Qizheng, Curve counting on abelian surfaces and threefolds, Algebr. Geom., 5, 4, 398, 2018 ·Zbl 1425.14044 ·doi:10.14231/ag-2018-012 |
[18] | Cao, Yalong; Oberdieck, Georg; Toda, Yukinobu, Gopakumar-Vafa type invariants of holomorphic symplectic 4-folds, Comm. Math. Phys., 405, 2, 26, 2024; Cao, Yalong; Oberdieck, Georg; Toda, Yukinobu, Gopakumar-Vafa type invariants of holomorphic symplectic 4-folds, Comm. Math. Phys., 405, 2, 26, 2024 ·Zbl 1539.14123 ·doi:10.1007/s00220-023-04882-8 |
[19] | Coates, Tom; Iritani, Hiroshi, Gromov-Witten invariants of local ℙ2 and modular forms, Kyoto J. Math., 61, 3, 543, 2021; Coates, Tom; Iritani, Hiroshi, Gromov-Witten invariants of local ℙ2 and modular forms, Kyoto J. Math., 61, 3, 543, 2021 ·Zbl 1484.14103 ·doi:10.1215/21562261-2021-0010 |
[20] | Eichler, Martin; Zagier, Don, The theory of Jacobi forms. Progr. Math., 55, 1985; Eichler, Martin; Zagier, Don, The theory of Jacobi forms. Progr. Math., 55, 1985 ·Zbl 0554.10018 ·doi:10.1007/978-1-4684-9162-3 |
[21] | Eynard, B.; Orantin, N., Computation of open Gromov-Witten invariants for toric Calabi-Yau 3-folds by topological recursion : a proof of the BKMP conjecture, Comm. Math. Phys., 337, 2, 483, 2015; Eynard, B.; Orantin, N., Computation of open Gromov-Witten invariants for toric Calabi-Yau 3-folds by topological recursion : a proof of the BKMP conjecture, Comm. Math. Phys., 337, 2, 483, 2015 ·Zbl 1365.14072 ·doi:10.1007/s00220-015-2361-5 |
[22] | Eynard, Bertrand; Orantin, Nicolas; Mariño, Marcos, Holomorphic anomaly and matrix models, J. High Energy Phys., 2007, 6, 058, 2007; Eynard, Bertrand; Orantin, Nicolas; Mariño, Marcos, Holomorphic anomaly and matrix models, J. High Energy Phys., 2007, 6, 058, 2007 ·Zbl 07979942 ·doi:10.1088/1126-6708/2007/06/058 |
[23] | Faber, C.; Pandharipande, R., Relative maps and tautological classes, J. Eur. Math. Soc., 7, 1, 13, 2005; Faber, C.; Pandharipande, R., Relative maps and tautological classes, J. Eur. Math. Soc., 7, 1, 13, 2005 ·Zbl 1084.14054 ·doi:10.4171/JEMS/20 |
[24] | Fang, Bohan; Ruan, Yongbin; Zhang, Yingchun; Zhou, Jie, Open Gromov-Witten theory of Kℙ2, Kℙ1×ℙ1, KW ℙ[1,1,2], K𝔽1 and Jacobi forms, Comm. Math. Phys., 369, 2, 675, 2019; Fang, Bohan; Ruan, Yongbin; Zhang, Yingchun; Zhou, Jie, Open Gromov-Witten theory of Kℙ2, Kℙ1×ℙ1, KW ℙ[1,1,2], K𝔽1 and Jacobi forms, Comm. Math. Phys., 369, 2, 675, 2019 ·Zbl 1440.14250 ·doi:10.1007/s00220-019-03440-5 |
[25] | Fang, Bohan; Liu, Chiu-Chu Melissa; Zong, Zhengyu, On the remodeling conjecture for toric Calabi-Yau 3-orbifolds, J. Amer. Math. Soc., 33, 1, 135, 2020; Fang, Bohan; Liu, Chiu-Chu Melissa; Zong, Zhengyu, On the remodeling conjecture for toric Calabi-Yau 3-orbifolds, J. Amer. Math. Soc., 33, 1, 135, 2020 ·Zbl 1444.14093 ·doi:10.1090/jams/934 |
[26] | Fujiki, Akira, On the de Rham cohomology group of a compact Kähler symplectic manifold, Algebraic geometry. Adv. Stud. Pure Math., 10, 105, 1987; Fujiki, Akira, On the de Rham cohomology group of a compact Kähler symplectic manifold, Algebraic geometry. Adv. Stud. Pure Math., 10, 105, 1987 ·Zbl 0654.53065 ·doi:10.2969/aspm/01010105 |
[27] | Grojnowski, I., Instantons and affine algebras, I : The Hilbert scheme and vertex operators, Math. Res. Lett., 3, 2, 275, 1996; Grojnowski, I., Instantons and affine algebras, I : The Hilbert scheme and vertex operators, Math. Res. Lett., 3, 2, 275, 1996 ·Zbl 0879.17011 ·doi:10.4310/MRL.1996.v3.n2.a12 |
[28] | Huybrechts, Daniel, A global Torelli theorem for hyperkähler manifolds (after M Verbitsky), Séminaire Bourbaki, 2010/2011. Astérisque, 348, 2012; Huybrechts, Daniel, A global Torelli theorem for hyperkähler manifolds (after M Verbitsky), Séminaire Bourbaki, 2010/2011. Astérisque, 348, 2012 |
[29] | van Ittersum, Jan-Willem; Oberdieck, Georg; Pixton, Aaron, Gromov-Witten theory of K3 surfaces and a Kaneko-Zagier equation for Jacobi forms, Selecta Math., 27, 4, 64, 2021; van Ittersum, Jan-Willem; Oberdieck, Georg; Pixton, Aaron, Gromov-Witten theory of K3 surfaces and a Kaneko-Zagier equation for Jacobi forms, Selecta Math., 27, 4, 64, 2021 ·Zbl 1509.14073 ·doi:10.1007/s00029-021-00673-y |
[30] | Kaneko, Masanobu; Zagier, Don, A generalized Jacobi theta function and quasimodular forms, The moduli space of curves. Progr. Math., 129, 165, 1995; Kaneko, Masanobu; Zagier, Don, A generalized Jacobi theta function and quasimodular forms, The moduli space of curves. Progr. Math., 129, 165, 1995 ·Zbl 0892.11015 ·doi:10.1007/978-1-4612-4264-2\_6 |
[31] | Kiem, Young-Hoon; Li, Jun, Localizing virtual cycles by cosections, J. Amer. Math. Soc., 26, 4, 1025, 2013; Kiem, Young-Hoon; Li, Jun, Localizing virtual cycles by cosections, J. Amer. Math. Soc., 26, 4, 1025, 2013 ·Zbl 1276.14083 ·doi:10.1090/S0894-0347-2013-00768-7 |
[32] | Kim, Bumsig; Sato, Fumitoshi, A generalization of Fulton-MacPherson configuration spaces, Selecta Math., 15, 3, 435, 2009; Kim, Bumsig; Sato, Fumitoshi, A generalization of Fulton-MacPherson configuration spaces, Selecta Math., 15, 3, 435, 2009 ·Zbl 1177.14029 ·doi:10.1007/s00029-009-0004-4 |
[33] | Koblitz, Neal, Introduction to elliptic curves and modular forms. Graduate Texts in Math., 97, 1993; Koblitz, Neal, Introduction to elliptic curves and modular forms. Graduate Texts in Math., 97, 1993 ·Zbl 0804.11039 ·doi:10.1007/978-1-4612-0909-6 |
[34] | Kool, Martijn; Thomas, Richard, Reduced classes and curve counting on surfaces, I : Theory, Algebr. Geom., 1, 3, 334, 2014; Kool, Martijn; Thomas, Richard, Reduced classes and curve counting on surfaces, I : Theory, Algebr. Geom., 1, 3, 334, 2014 ·Zbl 1322.14085 ·doi:10.14231/AG-2014-017 |
[35] | Kresch, Andrew, Cycle groups for Artin stacks, Invent. Math., 138, 3, 495, 1999; Kresch, Andrew, Cycle groups for Artin stacks, Invent. Math., 138, 3, 495, 1999 ·Zbl 0938.14003 ·doi:10.1007/s002220050351 |
[36] | Lee, Yuan-Pin; Qu, Feng, A product formula for log Gromov-Witten invariants, J. Math. Soc. Japan, 70, 1, 229, 2018; Lee, Yuan-Pin; Qu, Feng, A product formula for log Gromov-Witten invariants, J. Math. Soc. Japan, 70, 1, 229, 2018 ·Zbl 1400.14140 ·doi:10.2969/jmsj/07017521 |
[37] | Lehn, Manfred, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math., 136, 1, 157, 1999; Lehn, Manfred, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math., 136, 1, 157, 1999 ·Zbl 0919.14001 ·doi:10.1007/s002220050307 |
[38] | Lho, Hyenho, Gromov-Witten invariants of Calabi-Yau manifolds with two Kähler parameters, Int. Math. Res. Not., 2021, 10, 7552, 2021; Lho, Hyenho, Gromov-Witten invariants of Calabi-Yau manifolds with two Kähler parameters, Int. Math. Res. Not., 2021, 10, 7552, 2021 ·Zbl 1478.32081 ·doi:10.1093/imrn/rnz062 |
[39] | Lho, Hyenho; Pandharipande, Rahul, Stable quotients and the holomorphic anomaly equation, Adv. Math., 332, 349, 2018; Lho, Hyenho; Pandharipande, Rahul, Stable quotients and the holomorphic anomaly equation, Adv. Math., 332, 349, 2018 ·Zbl 1423.14317 ·doi:10.1016/j.aim.2018.05.020 |
[40] | Lho, Hyenho; Pandharipande, Rahul, Crepant resolution and the holomorphic anomaly equation for [ℂ3∕ℤ3], Proc. Lond. Math. Soc., 119, 3, 781, 2019; Lho, Hyenho; Pandharipande, Rahul, Crepant resolution and the holomorphic anomaly equation for [ℂ3∕ℤ3], Proc. Lond. Math. Soc., 119, 3, 781, 2019 ·Zbl 1465.14053 ·doi:10.1112/plms.12248 |
[41] | Lho, Hyenho; Pandharipande, Rahul, Holomorphic anomaly equations for the formal quintic, Peking Math. J., 2, 1, 1, 2019; Lho, Hyenho; Pandharipande, Rahul, Holomorphic anomaly equations for the formal quintic, Peking Math. J., 2, 1, 1, 2019 ·Zbl 1440.14256 ·doi:10.1007/s42543-018-0008-0 |
[42] | Li, Jun, Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom., 57, 3, 509, 2001; Li, Jun, Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom., 57, 3, 509, 2001 ·Zbl 1076.14540 |
[43] | Li, Jun, A degeneration formula of GW-invariants, J. Differential Geom., 60, 2, 199, 2002; Li, Jun, A degeneration formula of GW-invariants, J. Differential Geom., 60, 2, 199, 2002 ·Zbl 1063.14069 |
[44] | Li, Jun, Lecture notes on relative GW-invariants, Intersection theory and moduli. ICTP Lect. Notes, 19, 41, 2004; Li, Jun, Lecture notes on relative GW-invariants, Intersection theory and moduli. ICTP Lect. Notes, 19, 41, 2004 ·Zbl 1092.14067 |
[45] | Li, Jun; Tian, Gang, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc., 11, 1, 119, 1998; Li, Jun; Tian, Gang, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc., 11, 1, 119, 1998 ·Zbl 0912.14004 ·doi:10.1090/S0894-0347-98-00250-1 |
[46] | Libgober, Anatoly, Elliptic genera, real algebraic varieties and quasi-Jacobi forms, Topology of stratified spaces. Math. Sci. Res. Inst. Publ., 58, 95, 2011; Libgober, Anatoly, Elliptic genera, real algebraic varieties and quasi-Jacobi forms, Topology of stratified spaces. Math. Sci. Res. Inst. Publ., 58, 95, 2011 ·Zbl 1258.14040 |
[47] | Liu, Henry, Quasimaps and stable pairs, Forum Math. Sigma, 9, 2021; Liu, Henry, Quasimaps and stable pairs, Forum Math. Sigma, 9, 2021 ·Zbl 1466.14061 ·doi:10.1017/fms.2021.25 |
[48] | Looijenga, Eduard; Lunts, Valery A., A Lie algebra attached to a projective variety, Invent. Math., 129, 2, 361, 1997; Looijenga, Eduard; Lunts, Valery A., A Lie algebra attached to a projective variety, Invent. Math., 129, 2, 361, 1997 ·Zbl 0890.53030 ·doi:10.1007/s002220050166 |
[49] | Markman, Eyal, On the monodromy of moduli spaces of sheaves on K3 surfaces, J. Algebraic Geom., 17, 1, 29, 2008; Markman, Eyal, On the monodromy of moduli spaces of sheaves on K3 surfaces, J. Algebraic Geom., 17, 1, 29, 2008 ·Zbl 1185.14015 ·doi:10.1090/S1056-3911-07-00457-2 |
[50] | Markman, Eyal, A survey of Torelli and monodromy results for holomorphic-symplectic varieties, Complex and differential geometry. Springer Proc. Math., 8, 257, 2011; Markman, Eyal, A survey of Torelli and monodromy results for holomorphic-symplectic varieties, Complex and differential geometry. Springer Proc. Math., 8, 257, 2011 ·Zbl 1229.14009 ·doi:10.1007/978-3-642-20300-8\_15 |
[51] | Markman, Eyal, On the existence of universal families of marked irreducible holomorphic symplectic manifolds, Kyoto J. Math., 61, 1, 207, 2021; Markman, Eyal, On the existence of universal families of marked irreducible holomorphic symplectic manifolds, Kyoto J. Math., 61, 1, 207, 2021 ·Zbl 1465.53065 ·doi:10.1215/21562261-2019-0075 |
[52] | Maulik, Davesh, Gromov-Witten theory of 𝒜n-resolutions, Geom. Topol., 13, 3, 1729, 2009; Maulik, Davesh, Gromov-Witten theory of 𝒜n-resolutions, Geom. Topol., 13, 3, 1729, 2009 ·Zbl 1184.14085 ·doi:10.2140/gt.2009.13.1729 |
[53] | Maulik, Davesh; Oblomkov, Alexei, Donaldson-Thomas theory of 𝒜n× ℙ1, Compos. Math., 145, 5, 1249, 2009; Maulik, Davesh; Oblomkov, Alexei, Donaldson-Thomas theory of 𝒜n× ℙ1, Compos. Math., 145, 5, 1249, 2009 ·Zbl 1188.14036 ·doi:10.1112/S0010437X09003972 |
[54] | Maulik, Davesh; Oblomkov, Alexei, Quantum cohomology of the Hilbert scheme of points on 𝒜n-resolutions, J. Amer. Math. Soc., 22, 4, 1055, 2009; Maulik, Davesh; Oblomkov, Alexei, Quantum cohomology of the Hilbert scheme of points on 𝒜n-resolutions, J. Amer. Math. Soc., 22, 4, 1055, 2009 ·Zbl 1215.14055 ·doi:10.1090/S0894-0347-09-00632-8 |
[55] | Maulik, D.; Pandharipande, R., A topological view of Gromov-Witten theory, Topology, 45, 5, 887, 2006; Maulik, D.; Pandharipande, R., A topological view of Gromov-Witten theory, Topology, 45, 5, 887, 2006 ·Zbl 1112.14065 ·doi:10.1016/j.top.2006.06.002 |
[56] | Maulik, Davesh; Pandharipande, Rahul, Gromov-Witten theory and Noether-Lefschetz theory, A celebration of algebraic geometry. Clay Math. Proc., 18, 469, 2013; Maulik, Davesh; Pandharipande, Rahul, Gromov-Witten theory and Noether-Lefschetz theory, A celebration of algebraic geometry. Clay Math. Proc., 18, 469, 2013 ·Zbl 1317.14126 |
[57] | Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory, I, Compos. Math., 142, 5, 1263, 2006; Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory, I, Compos. Math., 142, 5, 1263, 2006 ·Zbl 1108.14046 ·doi:10.1112/S0010437X06002302 |
[58] | Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory, II, Compos. Math., 142, 5, 1286, 2006; Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory, II, Compos. Math., 142, 5, 1286, 2006 ·Zbl 1108.14047 ·doi:10.1112/S0010437X06002314 |
[59] | Maulik, D.; Pandharipande, R.; Thomas, R. P., Curves on K3 surfaces and modular forms, J. Topol., 3, 4, 937, 2010; Maulik, D.; Pandharipande, R.; Thomas, R. P., Curves on K3 surfaces and modular forms, J. Topol., 3, 4, 937, 2010 ·Zbl 1207.14058 ·doi:10.1112/jtopol/jtq030 |
[60] | Maulik, D.; Oblomkov, A.; Okounkov, A.; Pandharipande, R., Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math., 186, 2, 435, 2011; Maulik, D.; Oblomkov, A.; Okounkov, A.; Pandharipande, R., Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math., 186, 2, 435, 2011 ·Zbl 1232.14039 ·doi:10.1007/s00222-011-0322-y |
[61] | Milanov, Todor; Ruan, Yongbin; Shen, Yefeng, Gromov-Witten theory and cycle-valued modular forms, J. Reine Angew. Math., 735, 287, 2018; Milanov, Todor; Ruan, Yongbin; Shen, Yefeng, Gromov-Witten theory and cycle-valued modular forms, J. Reine Angew. Math., 735, 287, 2018 ·Zbl 1423.14321 ·doi:10.1515/crelle-2015-0019 |
[62] | Nakajima, Hiraku, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math., 145, 2, 379, 1997; Nakajima, Hiraku, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math., 145, 2, 379, 1997 ·Zbl 0915.14001 ·doi:10.2307/2951818 |
[63] | Neguţ, Andrei; Oberdieck, Georg; Yin, Qizheng, Motivic decompositions for the Hilbert scheme of points of a K3 surface, J. Reine Angew. Math., 778, 65, 2021; Neguţ, Andrei; Oberdieck, Georg; Yin, Qizheng, Motivic decompositions for the Hilbert scheme of points of a K3 surface, J. Reine Angew. Math., 778, 65, 2021 ·Zbl 1470.14015 ·doi:10.1515/crelle-2021-0015 |
[64] | Nesterov, Denis, Quasimaps to moduli spaces of sheaves on a K3 surface, Forum Math. Sigma, 12, 2024; Nesterov, Denis, Quasimaps to moduli spaces of sheaves on a K3 surface, Forum Math. Sigma, 12, 2024 ·Zbl 1551.14211 ·doi:10.1017/fms.2024.48 |
[65] | Oberdieck, Georg, Gromov-Witten invariants of the Hilbert schemes of points of a K3 surface, Geom. Topol., 22, 1, 323, 2018; Oberdieck, Georg, Gromov-Witten invariants of the Hilbert schemes of points of a K3 surface, Geom. Topol., 22, 1, 323, 2018 ·Zbl 1388.14154 ·doi:10.2140/gt.2018.22.323 |
[66] | Oberdieck, Georg, On reduced stable pair invariants, Math. Z., 289, 1-2, 323, 2018; Oberdieck, Georg, On reduced stable pair invariants, Math. Z., 289, 1-2, 323, 2018 ·Zbl 1440.14093 ·doi:10.1007/s00209-017-1953-5 |
[67] | Oberdieck, Georg, Gromov-Witten theory of K3 × ℙ1 and quasi-Jacobi forms, Int. Math. Res. Not., 2019, 16, 4966, 2019; Oberdieck, Georg, Gromov-Witten theory of K3 × ℙ1 and quasi-Jacobi forms, Int. Math. Res. Not., 2019, 16, 4966, 2019 ·Zbl 1457.14121 ·doi:10.1093/imrn/rnx267 |
[68] | Oberdieck, Georg, A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface, Comment. Math. Helv., 96, 1, 65, 2021; Oberdieck, Georg, A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface, Comment. Math. Helv., 96, 1, 65, 2021 ·Zbl 1462.14040 ·doi:10.4171/cmh/507 |
[69] | Oberdieck, Georg, Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties, Forum Math. Sigma, 10, 2022; Oberdieck, Georg, Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties, Forum Math. Sigma, 10, 2022 ·Zbl 1498.14141 ·doi:10.1017/fms.2022.10 |
[70] | Oberdieck, Georg, Marked relative invariants and GW/PT correspondences, Adv. Math., 439, 109472, 2024; Oberdieck, Georg, Marked relative invariants and GW/PT correspondences, Adv. Math., 439, 109472, 2024 ·Zbl 1544.14054 ·doi:10.1016/j.aim.2023.109472 |
[71] | Oberdieck, Georg, Multiple cover formulas for K3 geometries, wall-crossing, and Quot schemes, Geom. Topol., 28, 7, 3221, 2024; Oberdieck, Georg, Multiple cover formulas for K3 geometries, wall-crossing, and Quot schemes, Geom. Topol., 28, 7, 3221, 2024 ·Zbl 07953188 ·doi:10.2140/gt.2024.28.3221 |
[72] | Oberdieck, G.; Pandharipande, R., Curve counting on K3 ×E, the Igusa cusp form χ10, and descendent integration, K3 surfaces and their moduli. Progr. Math., 315, 245, 2016; Oberdieck, G.; Pandharipande, R., Curve counting on K3 ×E, the Igusa cusp form χ10, and descendent integration, K3 surfaces and their moduli. Progr. Math., 315, 245, 2016 ·Zbl 1349.14176 ·doi:10.1007/978-3-319-29959-4\_10 |
[73] | Oberdieck, Georg; Pixton, Aaron, Holomorphic anomaly equations and the Igusa cusp form conjecture, Invent. Math., 213, 2, 507, 2018; Oberdieck, Georg; Pixton, Aaron, Holomorphic anomaly equations and the Igusa cusp form conjecture, Invent. Math., 213, 2, 507, 2018 ·Zbl 1402.14048 ·doi:10.1007/s00222-018-0794-0 |
[74] | Oberdieck, Georg; Pixton, Aaron, Gromov-Witten theory of elliptic fibrations : Jacobi forms and holomorphic anomaly equations, Geom. Topol., 23, 3, 1415, 2019; Oberdieck, Georg; Pixton, Aaron, Gromov-Witten theory of elliptic fibrations : Jacobi forms and holomorphic anomaly equations, Geom. Topol., 23, 3, 1415, 2019 ·Zbl 1441.14184 ·doi:10.2140/gt.2019.23.1415 |
[75] | Oberdieck, Georg; Shen, Junliang, Curve counting on elliptic Calabi-Yau threefolds via derived categories, J. Eur. Math. Soc., 22, 3, 967, 2020; Oberdieck, Georg; Shen, Junliang, Curve counting on elliptic Calabi-Yau threefolds via derived categories, J. Eur. Math. Soc., 22, 3, 967, 2020 ·Zbl 1453.14139 ·doi:10.4171/jems/938 |
[76] | Oesinghaus, Jakob, Quasisymmetric functions and the Chow ring of the stack of expanded pairs, Res. Math. Sci., 6, 1, 5, 2019; Oesinghaus, Jakob, Quasisymmetric functions and the Chow ring of the stack of expanded pairs, Res. Math. Sci., 6, 1, 5, 2019 ·Zbl 1439.14030 ·doi:10.1007/s40687-018-0168-7 |
[77] | Okounkov, A.; Pandharipande, R., Virasoro constraints for target curves, Invent. Math., 163, 1, 47, 2006; Okounkov, A.; Pandharipande, R., Virasoro constraints for target curves, Invent. Math., 163, 1, 47, 2006 ·Zbl 1140.14047 ·doi:10.1007/s00222-005-0455-y |
[78] | Okounkov, A.; Pandharipande, R., The local Donaldson-Thomas theory of curves, Geom. Topol., 14, 3, 1503, 2010; Okounkov, A.; Pandharipande, R., The local Donaldson-Thomas theory of curves, Geom. Topol., 14, 3, 1503, 2010 ·Zbl 1205.14067 ·doi:10.2140/gt.2010.14.1503 |
[79] | Okounkov, A.; Pandharipande, R., Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math., 179, 3, 523, 2010; Okounkov, A.; Pandharipande, R., Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math., 179, 3, 523, 2010 ·Zbl 1198.14054 ·doi:10.1007/s00222-009-0223-5 |
[80] | Pandharipande, Rahul; Pixton, Aaron, Gromov-Witten/pairs descendent correspondence for toric 3-folds, Geom. Topol., 18, 5, 2747, 2014; Pandharipande, Rahul; Pixton, Aaron, Gromov-Witten/pairs descendent correspondence for toric 3-folds, Geom. Topol., 18, 5, 2747, 2014 ·Zbl 1342.14114 ·doi:10.2140/gt.2014.18.2747 |
[81] | Pandharipande, R.; Pixton, A., Gromov-Witten/pairs correspondence for the quintic 3-fold, J. Amer. Math. Soc., 30, 2, 389, 2017; Pandharipande, R.; Pixton, A., Gromov-Witten/pairs correspondence for the quintic 3-fold, J. Amer. Math. Soc., 30, 2, 389, 2017 ·Zbl 1360.14134 ·doi:10.1090/jams/858 |
[82] | Verbitsky, M., Cohomology of compact hyper-Kähler manifolds and its applications, Geom. Funct. Anal., 6, 4, 601, 1996; Verbitsky, M., Cohomology of compact hyper-Kähler manifolds and its applications, Geom. Funct. Anal., 6, 4, 601, 1996 ·Zbl 0861.53069 ·doi:10.1007/BF02247112 |
[83] | Verbitsky, Misha, Mapping class group and a global Torelli theorem for hyperkähler manifolds, Duke Math. J., 162, 15, 2929, 2013; Verbitsky, Misha, Mapping class group and a global Torelli theorem for hyperkähler manifolds, Duke Math. J., 162, 15, 2929, 2013 ·Zbl 1295.53042 ·doi:10.1215/00127094-2382680 |
[84] | Wang, Xin, Quasi-modularity and holomorphic anomaly equation for the twisted Gromov-Witten theory : 𝒪(3) over ℙ2, Acta Math. Sin. (Engl. Ser.), 35, 12, 1945, 2019; Wang, Xin, Quasi-modularity and holomorphic anomaly equation for the twisted Gromov-Witten theory : 𝒪(3) over ℙ2, Acta Math. Sin. (Engl. Ser.), 35, 12, 1945, 2019 ·Zbl 1428.14089 ·doi:10.1007/s10114-019-8562-7 |
[85] | Wang, Xin, Finite generation and holomorphic anomaly equation for equivariant Gromov-Witten invariants of Kℙ1×ℙ1, Front. Math., 18, 1, 17, 2023; Wang, Xin, Finite generation and holomorphic anomaly equation for equivariant Gromov-Witten invariants of Kℙ1×ℙ1, Front. Math., 18, 1, 17, 2023 ·Zbl 1533.53068 ·doi:10.1007/s11464-021-0225-1 |
[86] | Weil, André, Elliptic functions according to Eisenstein and Kronecker. Ergebnisse der Math., 88, 1976; Weil, André, Elliptic functions according to Eisenstein and Kronecker. Ergebnisse der Math., 88, 1976 ·Zbl 0318.33004 ·doi:10.1007/978-3-642-66209-6 |
[87] | Zagier, Don, Periods of modular forms and Jacobi theta functions, Invent. Math., 104, 3, 449, 1991; Zagier, Don, Periods of modular forms and Jacobi theta functions, Invent. Math., 104, 3, 449, 1991 ·Zbl 0742.11029 ·doi:10.1007/BF01245085 |
[88] | Ziegler, C., Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg, 59, 191, 1989; Ziegler, C., Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg, 59, 191, 1989 ·Zbl 0707.11035 ·doi:10.1007/BF02942329 |