Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Heavenly metrics, hyper-Lagrangians and Joyce structures.(English)Zbl 07947523

Summary: In [Proc. Sympos. Pure Math., American Mathematical Society, Providence, RI, 2021, pp. 1–66], Bridgeland defined a geometric structure, named a Joyce structure, conjectured to exist on the space \(M\) of stability conditions of a \(CY_3\) triangulated category. Given a non-degeneracy assumption, a feature of this structure is a complex hyper-Kähler metric with homothetic symmetry on the total space \(X = TM\) of the holomorphic tangent bundle. Generalising the isomonodromy calculation which leads to the \(A_2\) Joyce structure in [Math. Ann.385 (2023), 193–258], we obtain an explicit expression for a hyper-Kähler metric with homothetic symmetry via construction of the isomonodromic flows of a Schrödinger equation with deformed polynomial oscillator potential of odd-degree \(2n+1\). The metric is defined on a total space \(X\) of complex dimension \(4n\) and fibres over a \(2n\)-dimensional manifold \(M\) which can be identified with the unfolding of the \(A_{2n}\)-singularity. The hyper-Kähler structure is shown to be compatible with the natural symplectic structure on \(M\) in the sense of admitting anaffine symplectic fibration as defined in [Lett. Math. Phys.111 (2021), 54]. Separately, using the additional conditions imposed by a Joyce structure, we consider reductions of Plebański’s heavenly equations that govern the hyper-Kähler condition. We introduce the notion of aprojectable hyper-Lagrangian foliation and show that in dimension four such a foliation of \(X\) leads to a linearisation of the heavenly equation. The hyper-Kähler metrics constructed here are shown to admit such a foliation.
© 2024 The Author(s).Journal of the London Mathematical Society is copyright © London Mathematical Society.

MSC:

14H70 Relationships between algebraic curves and integrable systems
53C26 Hyper-Kähler and quaternionic Kähler geometry, “special” geometry
53C28 Twistor methods in differential geometry
34M56 Isomonodromic deformations for ordinary differential equations in the complex domain

Cite

References:

[1]Adamo, T.; Mason, L. J.; Sharma, A., Twistor sigma models for quaternionic geometry and graviton scattering, Adv. Theor. Math. Phys., 27, 3, 623-681, 2023 ·Zbl 07880775
[2]Alday, L. F.; Gaiotto, D.; Maldacena, J., Thermodynamic bubble ansatz, J. High Energy Phys., 9, 32, 2011 ·Zbl 1301.81162
[3]Alexandrov, S.; Pioline, B., Heavenly metrics, BPS indices and twistors, Lett. Math. Phys., 111, 116, 2021 ·Zbl 1491.53063
[4]Alexandrov, S.; Pioline, B., Conformal TBA for resolved conifolds, Ann. H. Poincaré., 23, 1909-1949, 2022 ·Zbl 1495.14064
[5]Atiyah, M.; Dunajski, M.; Mason, L. J., Twistor theory at fifty: from contour integrals to twistor strings, Proc. Roy. Soc., 473, 2017 ·Zbl 1404.81004
[6]Bailey, T. N.; Eastwood, M. G., Complex paraconformal manifolds — their differential geometry and twistor theory, Forum. Math., 3, 1, 61-104, 1991 ·Zbl 0728.53005
[7]Bobenko, A., Introduction to compact Riemann surfaces. Lecture Notes in Mathematics, 2013, Computational Approach to Riemann Surfaces: Springer: Berlin ·Zbl 1214.30030
[8]Bridgeland, T., Geometry from Donaldson‐Thomas invariants, Integrability, Quantization, and Geometry II. Quantum Theories and Algebraic Geometry. Proc. Sympos. Pure Math, 1-66, 2021, American Mathematical Society: Providence, RI ·Zbl 1468.14078
[9]Bridgeland, T., Joyce structures on spaces of quadratic differentials I, 2022
[10]Bridgeland, T., Tau functions from Joyce structures, 2024 ·Zbl 07971549
[11]Bridgeland, T., Joyce structures on spaces of quadratic differentials, 2024
[12]Bridgeland, T.; Masoero, D., On the monodromy of the deformed cubic oscillator, Math. Ann., 385, 193-258, 2023 ·Zbl 1514.14066
[13]Bridgeland, T.; Smith, I., Quadratic differentials as stability conditions, Publ. Math. IHES, 121, 155-278, 2015 ·Zbl 1328.14025
[14]Bridgeland, T.; Strachan, I. A. B., Complex hyper‐Kähler structures defined by Donaldson-Thomas invariants, Lett. Math. Phys., 111, 54, 2021 ·Zbl 1475.14108
[15]Calderbank, D., Selfdual 4‐manifolds, projective surfaces, and the Dunajski-West construction, SIGMA, 10, 35, 2014 ·Zbl 1288.53075
[16]Carlson, J.; Müller‐Stach, S.; Peters, C., Period mappings and period domains. 2nd. Cambridge Studies in Advanced Mathematics, 2017, Cambridge University Press: Cambridge ·Zbl 1390.14003
[17]Dubrovin, B., Geometry of 2D topological field theories, Integrable Systems and Quantum Groups. Lecture Notes in Mathematics, 1620, 1996, Springer: Berlin ·Zbl 0841.58065
[18]Dunajski, M., The nonlinear graviton as an integrable system, 1999, Oxford
[19]Dunajski, M., Null Kähler geometry and isomonodromic deformations, Commun. Math. Phys., 391, 77-105, 2022 ·Zbl 1506.53035
[20]Dunajski, M., Solitons, instantons and twistors. 2nd. Oxford Graduate Texts in Mathematics, 31, 2024, Oxford ·Zbl 1551.35388
[21]Dunajski, M.; Mason, L. J., Twistor theory of hyper‐Kähler metrics with hidden symmetries, J. Math. Phys., 44, 3430-3454, 2003 ·Zbl 1062.53038
[22]Dunajski, M.; Tod, K. P., Einstein-Weyl structures from hyper‐Kähler metrics with conformal Killing vectors, Differ. Geom. App., 14, 39-55, 2001 ·Zbl 0997.53036
[23]Dunajski, M.; West, S., Anti‐self‐dual conformal structures with null Killing vectors from projective structures, Commun. Math. Phys., 272, 85-118, 2007 ·Zbl 1147.53022
[24]Hitchin, N. J., Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geom., 42, 30-112, 1995 ·Zbl 0861.53049
[25]Jimbo, M.; Miwa, T.; Ueno, K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, Phys. D, 2, 2, 306-352, 1981 ·Zbl 1194.34167
[26]Jones, P.; P Tod, K., Minitwistor spaces and Einstein‐Weyl spaces, Class. Quant. Grav., 2, 4, 565-577, 1985 ·Zbl 0575.53042
[27]Mahoux, G., Introduction to the theory of isomonodromic deformations of linear ordinary differential equations with rational coefficients, The Painlevé Property, One Century Later. CRM Series in Mathematical Physics, 1999, Springer: Berlin ·Zbl 1034.34105
[28]Mason, L. J.; Newman, E. T., A connection between the Einstein and Yang‐Mills equations, Comm. Math. Phys., 121, 659-668, 1989 ·Zbl 0668.53048
[29]Mason, L. J.; Woodhouse, N. M. J., Integrability, self‐duality and twistor theory. LMS Monograph, 1996, Oxford University Press: Oxford ·Zbl 0856.58002
[30]Okamoto, K., Polynomial Hamiltonians associated with Painlevé equations, I, Proc. Japan Acad. Ser. A Math. Sci., 56, 264-268, 1980 ·Zbl 0476.34010
[31]Penrose, R., Nonlinear gravitons and curved twistor theory, Gen. Rel. Grav., 7, 31-52, 1976 ·Zbl 0354.53025
[32]Penrose, R.; Rindler, W., Spinors and space‐time, vol. 1: two‐spinor calculus and relativistic fields, 1984, Cambridge University Press: Cambridge ·Zbl 0538.53024
[33]Penrose, R.; Rindler, W., Spinors and space‐time, vol. 2: spinor and twistor methods in space‐time geometry, 1984, Cambridge University Press: Cambridge ·Zbl 0538.53024
[34]Plebański, J., Some solutions of complex Einstein equations, J. Math. Phys., 16, 2395-2402, 1975
[35]Saito, K., Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci., 19, 3, 1231-1264, 1983 ·Zbl 0539.58003
[36]Sparling, G. A. J.; Tod, K. P., An example of an H‐space, J. Math. Phys., 22, 331-332, 1981
[37]Takasaki, K., An infinite number of hidden variables in hyper‐Kähler metrics, J. Math. Phys., 30, 1515, 1989 ·Zbl 0683.53017
[38]Ueno, K., Monodromy preserving deformation of linear differential equations with irregular singular points, Proc. Japan. Acad. Ser. A, 56, 97-102, 1980 ·Zbl 0487.34004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp