[1] | Adamo, T.; Mason, L. J.; Sharma, A., Twistor sigma models for quaternionic geometry and graviton scattering, Adv. Theor. Math. Phys., 27, 3, 623-681, 2023 ·Zbl 07880775 |
[2] | Alday, L. F.; Gaiotto, D.; Maldacena, J., Thermodynamic bubble ansatz, J. High Energy Phys., 9, 32, 2011 ·Zbl 1301.81162 |
[3] | Alexandrov, S.; Pioline, B., Heavenly metrics, BPS indices and twistors, Lett. Math. Phys., 111, 116, 2021 ·Zbl 1491.53063 |
[4] | Alexandrov, S.; Pioline, B., Conformal TBA for resolved conifolds, Ann. H. Poincaré., 23, 1909-1949, 2022 ·Zbl 1495.14064 |
[5] | Atiyah, M.; Dunajski, M.; Mason, L. J., Twistor theory at fifty: from contour integrals to twistor strings, Proc. Roy. Soc., 473, 2017 ·Zbl 1404.81004 |
[6] | Bailey, T. N.; Eastwood, M. G., Complex paraconformal manifolds — their differential geometry and twistor theory, Forum. Math., 3, 1, 61-104, 1991 ·Zbl 0728.53005 |
[7] | Bobenko, A., Introduction to compact Riemann surfaces. Lecture Notes in Mathematics, 2013, Computational Approach to Riemann Surfaces: Springer: Berlin ·Zbl 1214.30030 |
[8] | Bridgeland, T., Geometry from Donaldson‐Thomas invariants, Integrability, Quantization, and Geometry II. Quantum Theories and Algebraic Geometry. Proc. Sympos. Pure Math, 1-66, 2021, American Mathematical Society: Providence, RI ·Zbl 1468.14078 |
[9] | Bridgeland, T., Joyce structures on spaces of quadratic differentials I, 2022 |
[10] | Bridgeland, T., Tau functions from Joyce structures, 2024 ·Zbl 07971549 |
[11] | Bridgeland, T., Joyce structures on spaces of quadratic differentials, 2024 |
[12] | Bridgeland, T.; Masoero, D., On the monodromy of the deformed cubic oscillator, Math. Ann., 385, 193-258, 2023 ·Zbl 1514.14066 |
[13] | Bridgeland, T.; Smith, I., Quadratic differentials as stability conditions, Publ. Math. IHES, 121, 155-278, 2015 ·Zbl 1328.14025 |
[14] | Bridgeland, T.; Strachan, I. A. B., Complex hyper‐Kähler structures defined by Donaldson-Thomas invariants, Lett. Math. Phys., 111, 54, 2021 ·Zbl 1475.14108 |
[15] | Calderbank, D., Selfdual 4‐manifolds, projective surfaces, and the Dunajski-West construction, SIGMA, 10, 35, 2014 ·Zbl 1288.53075 |
[16] | Carlson, J.; Müller‐Stach, S.; Peters, C., Period mappings and period domains. 2nd. Cambridge Studies in Advanced Mathematics, 2017, Cambridge University Press: Cambridge ·Zbl 1390.14003 |
[17] | Dubrovin, B., Geometry of 2D topological field theories, Integrable Systems and Quantum Groups. Lecture Notes in Mathematics, 1620, 1996, Springer: Berlin ·Zbl 0841.58065 |
[18] | Dunajski, M., The nonlinear graviton as an integrable system, 1999, Oxford |
[19] | Dunajski, M., Null Kähler geometry and isomonodromic deformations, Commun. Math. Phys., 391, 77-105, 2022 ·Zbl 1506.53035 |
[20] | Dunajski, M., Solitons, instantons and twistors. 2nd. Oxford Graduate Texts in Mathematics, 31, 2024, Oxford ·Zbl 1551.35388 |
[21] | Dunajski, M.; Mason, L. J., Twistor theory of hyper‐Kähler metrics with hidden symmetries, J. Math. Phys., 44, 3430-3454, 2003 ·Zbl 1062.53038 |
[22] | Dunajski, M.; Tod, K. P., Einstein-Weyl structures from hyper‐Kähler metrics with conformal Killing vectors, Differ. Geom. App., 14, 39-55, 2001 ·Zbl 0997.53036 |
[23] | Dunajski, M.; West, S., Anti‐self‐dual conformal structures with null Killing vectors from projective structures, Commun. Math. Phys., 272, 85-118, 2007 ·Zbl 1147.53022 |
[24] | Hitchin, N. J., Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geom., 42, 30-112, 1995 ·Zbl 0861.53049 |
[25] | Jimbo, M.; Miwa, T.; Ueno, K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, Phys. D, 2, 2, 306-352, 1981 ·Zbl 1194.34167 |
[26] | Jones, P.; P Tod, K., Minitwistor spaces and Einstein‐Weyl spaces, Class. Quant. Grav., 2, 4, 565-577, 1985 ·Zbl 0575.53042 |
[27] | Mahoux, G., Introduction to the theory of isomonodromic deformations of linear ordinary differential equations with rational coefficients, The Painlevé Property, One Century Later. CRM Series in Mathematical Physics, 1999, Springer: Berlin ·Zbl 1034.34105 |
[28] | Mason, L. J.; Newman, E. T., A connection between the Einstein and Yang‐Mills equations, Comm. Math. Phys., 121, 659-668, 1989 ·Zbl 0668.53048 |
[29] | Mason, L. J.; Woodhouse, N. M. J., Integrability, self‐duality and twistor theory. LMS Monograph, 1996, Oxford University Press: Oxford ·Zbl 0856.58002 |
[30] | Okamoto, K., Polynomial Hamiltonians associated with Painlevé equations, I, Proc. Japan Acad. Ser. A Math. Sci., 56, 264-268, 1980 ·Zbl 0476.34010 |
[31] | Penrose, R., Nonlinear gravitons and curved twistor theory, Gen. Rel. Grav., 7, 31-52, 1976 ·Zbl 0354.53025 |
[32] | Penrose, R.; Rindler, W., Spinors and space‐time, vol. 1: two‐spinor calculus and relativistic fields, 1984, Cambridge University Press: Cambridge ·Zbl 0538.53024 |
[33] | Penrose, R.; Rindler, W., Spinors and space‐time, vol. 2: spinor and twistor methods in space‐time geometry, 1984, Cambridge University Press: Cambridge ·Zbl 0538.53024 |
[34] | Plebański, J., Some solutions of complex Einstein equations, J. Math. Phys., 16, 2395-2402, 1975 |
[35] | Saito, K., Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci., 19, 3, 1231-1264, 1983 ·Zbl 0539.58003 |
[36] | Sparling, G. A. J.; Tod, K. P., An example of an H‐space, J. Math. Phys., 22, 331-332, 1981 |
[37] | Takasaki, K., An infinite number of hidden variables in hyper‐Kähler metrics, J. Math. Phys., 30, 1515, 1989 ·Zbl 0683.53017 |
[38] | Ueno, K., Monodromy preserving deformation of linear differential equations with irregular singular points, Proc. Japan. Acad. Ser. A, 56, 97-102, 1980 ·Zbl 0487.34004 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.