[1] | Alexandrou, T.; Schreieder, S., Truncated pushforwards and refined unramified cohomology, 2024, arXiv preprint ·Zbl 07945719 |
[2] | Bloch, S., Torsion algebraic cycles and a theorem of Roitman, Compos. Math., 39, 1, 107-127, 1979 ·Zbl 0463.14002 |
[3] | Bloch, S., Algebraic cycles and higher K-theory, Adv. Math., 61, 3, 267-304, 1986 ·Zbl 0608.14004 |
[4] | Bloch, S., Algebraic cycles and the Beilinson conjectures, (The Lefschetz Centennial Conference, vol. 1, 1986, American Mathematical Soc.), 65 ·Zbl 0605.14017 |
[5] | Bloch, S., Lectures on Algebraic Cycles, New Mathematical Monographs, vol. 16, 2010, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1201.14006 |
[6] | Bloch, S.; Ogus, A., Gersten’s conjecture and the homology of schemes, Ann. Sci. Éc. Norm. Supér. (4), 7, 181-201, 1975, 1974 ·Zbl 0307.14008 |
[7] | Bhatt, B.; Scholze, P., The pro-étale topology for schemes, Astérisque, 369, 99-201, 2015 ·Zbl 1351.19001 |
[8] | Cisinski, D.-C.; Déglise, F., Integral mixed motives in equal characteristic, Doc. Math., 145-194, 2015 ·Zbl 1357.19004 |
[9] | Cisinski, D.-C.; Déglise, F., Étale motives, Compos. Math., 152, 3, 556-666, 2016 ·Zbl 1453.14059 |
[10] | Colliot-Thélène, J.-L., Cycles Algébriques de Torsion et K-Théorie Algébrique, Lecture Notes in Math., vol. 1553, 1993, Springer: Springer Berlin ·Zbl 0806.14002 |
[11] | Colliot-Thélene, J.-L., Birational invariants, purity, and the Gersten conjecture, (Proceedings of Symposia in Pure Mathematics, vol. 58, 1995, American Mathematical Society), 1-64 ·Zbl 0834.14009 |
[12] | Colliot-Thélène, J.-L.; Sansuc, J.-J.; Soulé, C., Torsion dans le groupe de Chow de codimension deux, Duke Math. J., 50, 3, 763-801, 1983 ·Zbl 0574.14004 |
[13] | Colliot-Thélène, J.-L.; Voisin, C., Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. J., 161, 5, 735-801, 2012 ·Zbl 1244.14010 |
[14] | Geisser, T.; Levine, M., The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine Angew. Math., 530, 55-103, 2001 ·Zbl 1023.14003 |
[15] | Ivorra, F., Réalisation ℓ-adique des motifs triangulés géométriques II, Math. Z., 265, 1, 221-247, 2010 ·Zbl 1208.19004 |
[16] | Jannsen, U.; Saito, S., Kato homology of arithmetic schemes and higher class field theory over local fields, Doc. Math., Extra Vol., 479-538, 2003, Kazuya Kato’s fiftieth birthday ·Zbl 1092.14504 |
[17] | Jannsen, U.; Saito, S., Kato conjecture and motivic cohomology over finite fields, 2009, arXiv preprint |
[18] | Kato, K., A Hasse principle for two-dimensional global fields, J. Reine Angew. Math., 366, 142-183, 1986, With an appendix by Jean-Louis Colliot-Thélène ·Zbl 0576.12012 |
[19] | Kelly, S., Triangulated categories of motives in positive characteristic, 2012, Université Paris 13 and the Australian National University, PhD thesis |
[20] | Kelly, S., Un isomorphisme de Suslin, Bull. Soc. Math. Fr., 146, 4, 633-647, 2018 ·Zbl 1420.14043 |
[21] | Kerz, M.; Saito, S., Cohomological Hasse principle and motivic cohomology for arithmetic schemes, Publ. Math. IHES, 115, 123-183, 2012 ·Zbl 1263.14026 |
[22] | Kerz, M.; Saito, S., Cohomological Hasse principle and resolution of quotient singularities, N.Y. J. Math., 19, 597-645, 2013 ·Zbl 1295.14014 |
[23] | Kelly, S.; Saito, S., Weight homology of motives, Int. Math. Res. Not., 2017, 13, 3938-3984, 2017 ·Zbl 1405.14052 |
[24] | Kok, K.; Zhou, L., On the functoriality of refined unramified cohomology, 2024, arXiv preprint |
[25] | J.S. Milne, Lectures on étale cohomology, 2012. |
[26] | Mazza, C.; Voevodsky, V.; Weibel, C. A., Lecture Notes on Motivic Cohomology, vol. 2, 2006, American Mathematical Soc. ·Zbl 1115.14010 |
[27] | Rost, M., Chow groups with coefficients, Doc. Math., 1, 16, 319-393, 1996 ·Zbl 0864.14002 |
[28] | Schreieder, S., A moving lemma for cohomology with support, 2022, arXiv preprint |
[29] | Schreieder, S., Refined unramified cohomology of schemes, Compos. Math., 159, 7, 1466-1530, 2023 ·Zbl 07700867 |
[30] | Schreieder, S., Infinite torsion in Griffiths groups, J. Eur. Math. Soc., 1-31, 2024 |
[31] | Suslin, A. A., Higher Chow groups and étale cohomology, 143, 239-254, 2000 ·Zbl 1019.14001 |
[32] | Suslin, A.; Voevodsky, V., Bloch-Kato conjecture and motivic cohomology with finite coefficients, (The Arithmetic and Geometry of Algebraic Cycles. The Arithmetic and Geometry of Algebraic Cycles, Banff, AB, 1998. The Arithmetic and Geometry of Algebraic Cycles. The Arithmetic and Geometry of Algebraic Cycles, Banff, AB, 1998, NATO Sci. Ser. C Math. Phys. Sci., vol. 548, 2000, Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 117-189 ·Zbl 1005.19001 |
[33] | Voevodsky, V., Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not., 7, 351-355, 2002 ·Zbl 1057.14026 |
[34] | Voevodsky, V., On motivic cohomology with \(\mathbb{Z} / \ell \)-coefficients, Ann. Math., 401-438, 2011 ·Zbl 1236.14026 |
[35] | Voisin, C., Degree 4 unramified cohomology with finite coefficients and torsion codimension 3 cycles, (Geometry and Arithmetic. Geometry and Arithmetic, EMS Ser. Congr. Rep., 2012, Eur. Math. Soc.: Eur. Math. Soc. Zürich), 347-368 ·Zbl 1317.14044 |
[36] | Voevodsky, V.; Suslin, A.; Friedlander, E. M., Cycles, Transfers, and Motivic Homology Theories, Annals of Mathematics Studies, vol. 143, 2000, Princeton University Press: Princeton University Press Princeton, NJ ·Zbl 1021.14006 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.