Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Higher Chow groups with finite coefficients and refined unramified cohomology.(English)Zbl 07945712

Summary: In this paper we show that Bloch’s higher cycle class map with finite coefficients for quasi-projective equi-dimensional schemes over a field fits naturally in a long exact sequence involving Schreieder’s refined unramified cohomology. We also show that the refined unramified cohomology satisfies the localization sequence. Using this we conjecture in the end that refined unramified cohomology is a motivic homology theory and explain how this is related to the aforementioned results.

MSC:

14Cxx Cycles and subschemes
14Fxx (Co)homology theory in algebraic geometry
19Exx \(K\)-theory in geometry

Cite

References:

[1]Alexandrou, T.; Schreieder, S., Truncated pushforwards and refined unramified cohomology, 2024, arXiv preprint ·Zbl 07945719
[2]Bloch, S., Torsion algebraic cycles and a theorem of Roitman, Compos. Math., 39, 1, 107-127, 1979 ·Zbl 0463.14002
[3]Bloch, S., Algebraic cycles and higher K-theory, Adv. Math., 61, 3, 267-304, 1986 ·Zbl 0608.14004
[4]Bloch, S., Algebraic cycles and the Beilinson conjectures, (The Lefschetz Centennial Conference, vol. 1, 1986, American Mathematical Soc.), 65 ·Zbl 0605.14017
[5]Bloch, S., Lectures on Algebraic Cycles, New Mathematical Monographs, vol. 16, 2010, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1201.14006
[6]Bloch, S.; Ogus, A., Gersten’s conjecture and the homology of schemes, Ann. Sci. Éc. Norm. Supér. (4), 7, 181-201, 1975, 1974 ·Zbl 0307.14008
[7]Bhatt, B.; Scholze, P., The pro-étale topology for schemes, Astérisque, 369, 99-201, 2015 ·Zbl 1351.19001
[8]Cisinski, D.-C.; Déglise, F., Integral mixed motives in equal characteristic, Doc. Math., 145-194, 2015 ·Zbl 1357.19004
[9]Cisinski, D.-C.; Déglise, F., Étale motives, Compos. Math., 152, 3, 556-666, 2016 ·Zbl 1453.14059
[10]Colliot-Thélène, J.-L., Cycles Algébriques de Torsion et K-Théorie Algébrique, Lecture Notes in Math., vol. 1553, 1993, Springer: Springer Berlin ·Zbl 0806.14002
[11]Colliot-Thélene, J.-L., Birational invariants, purity, and the Gersten conjecture, (Proceedings of Symposia in Pure Mathematics, vol. 58, 1995, American Mathematical Society), 1-64 ·Zbl 0834.14009
[12]Colliot-Thélène, J.-L.; Sansuc, J.-J.; Soulé, C., Torsion dans le groupe de Chow de codimension deux, Duke Math. J., 50, 3, 763-801, 1983 ·Zbl 0574.14004
[13]Colliot-Thélène, J.-L.; Voisin, C., Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. J., 161, 5, 735-801, 2012 ·Zbl 1244.14010
[14]Geisser, T.; Levine, M., The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine Angew. Math., 530, 55-103, 2001 ·Zbl 1023.14003
[15]Ivorra, F., Réalisation ℓ-adique des motifs triangulés géométriques II, Math. Z., 265, 1, 221-247, 2010 ·Zbl 1208.19004
[16]Jannsen, U.; Saito, S., Kato homology of arithmetic schemes and higher class field theory over local fields, Doc. Math., Extra Vol., 479-538, 2003, Kazuya Kato’s fiftieth birthday ·Zbl 1092.14504
[17]Jannsen, U.; Saito, S., Kato conjecture and motivic cohomology over finite fields, 2009, arXiv preprint
[18]Kato, K., A Hasse principle for two-dimensional global fields, J. Reine Angew. Math., 366, 142-183, 1986, With an appendix by Jean-Louis Colliot-Thélène ·Zbl 0576.12012
[19]Kelly, S., Triangulated categories of motives in positive characteristic, 2012, Université Paris 13 and the Australian National University, PhD thesis
[20]Kelly, S., Un isomorphisme de Suslin, Bull. Soc. Math. Fr., 146, 4, 633-647, 2018 ·Zbl 1420.14043
[21]Kerz, M.; Saito, S., Cohomological Hasse principle and motivic cohomology for arithmetic schemes, Publ. Math. IHES, 115, 123-183, 2012 ·Zbl 1263.14026
[22]Kerz, M.; Saito, S., Cohomological Hasse principle and resolution of quotient singularities, N.Y. J. Math., 19, 597-645, 2013 ·Zbl 1295.14014
[23]Kelly, S.; Saito, S., Weight homology of motives, Int. Math. Res. Not., 2017, 13, 3938-3984, 2017 ·Zbl 1405.14052
[24]Kok, K.; Zhou, L., On the functoriality of refined unramified cohomology, 2024, arXiv preprint
[25]J.S. Milne, Lectures on étale cohomology, 2012.
[26]Mazza, C.; Voevodsky, V.; Weibel, C. A., Lecture Notes on Motivic Cohomology, vol. 2, 2006, American Mathematical Soc. ·Zbl 1115.14010
[27]Rost, M., Chow groups with coefficients, Doc. Math., 1, 16, 319-393, 1996 ·Zbl 0864.14002
[28]Schreieder, S., A moving lemma for cohomology with support, 2022, arXiv preprint
[29]Schreieder, S., Refined unramified cohomology of schemes, Compos. Math., 159, 7, 1466-1530, 2023 ·Zbl 07700867
[30]Schreieder, S., Infinite torsion in Griffiths groups, J. Eur. Math. Soc., 1-31, 2024
[31]Suslin, A. A., Higher Chow groups and étale cohomology, 143, 239-254, 2000 ·Zbl 1019.14001
[32]Suslin, A.; Voevodsky, V., Bloch-Kato conjecture and motivic cohomology with finite coefficients, (The Arithmetic and Geometry of Algebraic Cycles. The Arithmetic and Geometry of Algebraic Cycles, Banff, AB, 1998. The Arithmetic and Geometry of Algebraic Cycles. The Arithmetic and Geometry of Algebraic Cycles, Banff, AB, 1998, NATO Sci. Ser. C Math. Phys. Sci., vol. 548, 2000, Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 117-189 ·Zbl 1005.19001
[33]Voevodsky, V., Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not., 7, 351-355, 2002 ·Zbl 1057.14026
[34]Voevodsky, V., On motivic cohomology with \(\mathbb{Z} / \ell \)-coefficients, Ann. Math., 401-438, 2011 ·Zbl 1236.14026
[35]Voisin, C., Degree 4 unramified cohomology with finite coefficients and torsion codimension 3 cycles, (Geometry and Arithmetic. Geometry and Arithmetic, EMS Ser. Congr. Rep., 2012, Eur. Math. Soc.: Eur. Math. Soc. Zürich), 347-368 ·Zbl 1317.14044
[36]Voevodsky, V.; Suslin, A.; Friedlander, E. M., Cycles, Transfers, and Motivic Homology Theories, Annals of Mathematics Studies, vol. 143, 2000, Princeton University Press: Princeton University Press Princeton, NJ ·Zbl 1021.14006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp