[1] | Amdeberhan, T.; Andrews, G. E.; Tauraso, R., Extensions of MacMahon’s sums of divisors, Res. Math. Sci., 11, Article 8 pp., 2024 ·Zbl 1544.11070 |
[2] | Andrews, G. E.; Rose, S. C.F., MacMahon’s sum-of-divisors functions, Chebyshev polynomials, and quasimodular forms, J. Reine Angew. Math., 676, 97-103, 2013 ·Zbl 1337.11002 |
[3] | Atkin, A. O.L.; Garvan, F. G., Relations between the ranks and cranks of partitions, Ramanujan J., 7, 343-366, 2003 ·Zbl 1039.11069 |
[4] | H. Bachmann, Explicit formulas for MacMahon’s \(A_r(q)\) and \(C_r(q)\), (e-mail: November 13, 2023), private communication. |
[5] | Brindle, B., A unified approch to qMZVs, 2021, preprint available at |
[6] | Chan, H. H., Triple product identity, quintuple product identity and Ramanujan’s differential equations for the classical Eisenstein series, Proc. Am. Math. Soc., 135, 1987-1992, 2007 ·Zbl 1111.11024 |
[7] | Garvan, F. G., Higher order spt-functions, Adv. Math., 228, 241-265, 2011 ·Zbl 1268.11143 |
[8] | Gordon, B., Ramanujan congruences for \(p_{- k}( \operatorname{mod} 11^r)\), Glasg. Math. J., 24, 107-123, 1983 ·Zbl 0513.10030 |
[9] | Han, G.-H., The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, Ann. Inst. Fourier, 60, 1, 1-29, 2010 ·Zbl 1215.05013 |
[10] | Kaneko, M.; Zagier, D., A generalized Jacobi theta function and quasimodular forms, (The Moduli Space of Curves. The Moduli Space of Curves, Texas Island, 1994. The Moduli Space of Curves. The Moduli Space of Curves, Texas Island, 1994, Progr. Math., vol. 129, 1995, Birkhäuser Boston: Birkhäuser Boston Boston, MA), 165-172 ·Zbl 0892.11015 |
[11] | MacMahon, P. A., Divisors of numbers and their continuations in the theory of partitions, Proc. Lond. Math. Soc. (2), 19, 1, 75-113, 1920, [also in Percy Alexander MacMahon Collected Papers, vol. 2, pp. 303-341 (ed. G.E. Andrews), MIT Press, Cambridge, 1986] ·JFM 47.0117.01 |
[12] | Nekrasov, N. A.; Okounkov, A., Seiberg-Witten Theory and Random Partitions, in the Unity of Mathematics, Progress in Mathematics, vol. 244, 525-596, 2006, Birkhäuser: Birkhäuser Boston ·Zbl 1233.14029 |
[13] | Ono, K., The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, CBMS Regional Conference Series in Mathematics, vol. 102, 2004, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 1119.11026 |
[14] | Pólya, G., Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und Chemische Verbindungen, Acta Math., 68, 1, 145-254, 1937 ·JFM 63.0547.04 |
[15] | Ramanujan, S., On certain arithmetical functions, Trans. Camb. Philos. Soc., 22, 159-184, 1916 ·Zbl 07426016 |
[16] | Ramanujan, S., The Lost Notebook and Other Unpublished Papers, 1988, Narosa: Narosa New Delhi ·Zbl 0639.01023 |
[17] | Rose, S. C.F., Quasimodularity of generalized sum-of-divisors functions, Res. Number Theory, 1, Article 18 pp., 2015 ·Zbl 1379.11046 |
[18] | Serre, J.-P., A Course in Arithmetic, 1973, Springer-Verlag: Springer-Verlag New York ·Zbl 0256.12001 |
[19] | Serre, J.-P., Formes Modulaires et Fonctions Zêta p-Adiques, Lect. Notes, vol. 350, 191-268, 1973, Springer ·Zbl 0277.12014 |
[20] | Serre, J.-P., Divisibilité de certaines fonctions arithmétiques, Enseign. Math., 22, 227-260, 1976 ·Zbl 0355.10021 |
[21] | Sturm, J., On the Congruence of Modular Forms, Lect. Notes in Math., vol. 1240, 275-280, 1984, Springer ·Zbl 0615.10035 |
[22] | Swinnerton-Dyer, H. P.F., On ℓ-adic representations and congruences for coefficients of modular forms, (Springer Lect. Notes, vol. 350, 1973), 1-55 ·Zbl 0267.10032 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.