Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

MacMahon’s sums-of-divisors and allied \(q\)-series.(English)Zbl 07916608

Summary: Here we investigate the \(q\)-series\[\begin{aligned}\mathcal{U}_a(q) &= \sum_{n = 0}^\infty MO(a; n) q^n \\&:= \sum_{0 < k_1 < k_2 < \cdots < k_a} \frac{q^{k_1 + k_2 + \cdots + k_a}}{(1 - q^{k_1})^2 (1 - q^{k_2})^2 \cdots (1 - q^{k_a})^2} \\\mathcal{U}_a^\star(q) &= \sum_{n = 0}^\infty M(a; n) q^n \\&:= \sum_{1 \leq k_1 \leq k_2 \leq \cdots \leq k_a} \frac{q^{k_1 + k_2 + \cdots + k_a}}{(1 - q^{k_1})^2 (1 - q^{k_2})^2 \cdots (1 - q^{k_a})^2}.\end{aligned}\]
MacMahon introduced the \(\mathcal{U}_a(q)\) in his seminal work on partitions and divisor functions. Recent works show that these series are sums of quasimodular forms with weights \(\leq 2a\). We make this explicit by describing them in terms of Eisenstein series. We use these formulas to obtain explicit and general congruences for the coefficients \(M O(a; n)\) and \(M(a; n)\). Notably, we prove the conjecture of Amdeberhan-Andrews-Tauraso as the \(m = 0\) special case of the infinite family of congruences\[MO(11 m + 10; 11 n + 7) \equiv 0 \pmod{11},\]and we prove that\[MO(17 m + 16; 17 n + 15) \equiv 0 \pmod{17}.\]We obtain further formulae using the limiting behavior of these series. For \(n \leq a + \binom{a + 1}{2}\), we obtain a “hook length” formula for \(MO(a; n)\), and for \(n \leq 2 a\), we find that \(M(a; n) = \binom{a + n - 1}{n - a} + \binom{a + n - 2}{n - a - 1}\).

MSC:

11F03 Modular and automorphic functions
11A25 Arithmetic functions; related numbers; inversion formulas
11F50 Jacobi forms
11M41 Other Dirichlet series and zeta functions
11F11 Holomorphic modular forms of integral weight
11F33 Congruences for modular and \(p\)-adic modular forms

Cite

References:

[1]Amdeberhan, T.; Andrews, G. E.; Tauraso, R., Extensions of MacMahon’s sums of divisors, Res. Math. Sci., 11, Article 8 pp., 2024 ·Zbl 1544.11070
[2]Andrews, G. E.; Rose, S. C.F., MacMahon’s sum-of-divisors functions, Chebyshev polynomials, and quasimodular forms, J. Reine Angew. Math., 676, 97-103, 2013 ·Zbl 1337.11002
[3]Atkin, A. O.L.; Garvan, F. G., Relations between the ranks and cranks of partitions, Ramanujan J., 7, 343-366, 2003 ·Zbl 1039.11069
[4]H. Bachmann, Explicit formulas for MacMahon’s \(A_r(q)\) and \(C_r(q)\), (e-mail: November 13, 2023), private communication.
[5]Brindle, B., A unified approch to qMZVs, 2021, preprint available at
[6]Chan, H. H., Triple product identity, quintuple product identity and Ramanujan’s differential equations for the classical Eisenstein series, Proc. Am. Math. Soc., 135, 1987-1992, 2007 ·Zbl 1111.11024
[7]Garvan, F. G., Higher order spt-functions, Adv. Math., 228, 241-265, 2011 ·Zbl 1268.11143
[8]Gordon, B., Ramanujan congruences for \(p_{- k}( \operatorname{mod} 11^r)\), Glasg. Math. J., 24, 107-123, 1983 ·Zbl 0513.10030
[9]Han, G.-H., The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, Ann. Inst. Fourier, 60, 1, 1-29, 2010 ·Zbl 1215.05013
[10]Kaneko, M.; Zagier, D., A generalized Jacobi theta function and quasimodular forms, (The Moduli Space of Curves. The Moduli Space of Curves, Texas Island, 1994. The Moduli Space of Curves. The Moduli Space of Curves, Texas Island, 1994, Progr. Math., vol. 129, 1995, Birkhäuser Boston: Birkhäuser Boston Boston, MA), 165-172 ·Zbl 0892.11015
[11]MacMahon, P. A., Divisors of numbers and their continuations in the theory of partitions, Proc. Lond. Math. Soc. (2), 19, 1, 75-113, 1920, [also in Percy Alexander MacMahon Collected Papers, vol. 2, pp. 303-341 (ed. G.E. Andrews), MIT Press, Cambridge, 1986] ·JFM 47.0117.01
[12]Nekrasov, N. A.; Okounkov, A., Seiberg-Witten Theory and Random Partitions, in the Unity of Mathematics, Progress in Mathematics, vol. 244, 525-596, 2006, Birkhäuser: Birkhäuser Boston ·Zbl 1233.14029
[13]Ono, K., The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, CBMS Regional Conference Series in Mathematics, vol. 102, 2004, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 1119.11026
[14]Pólya, G., Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und Chemische Verbindungen, Acta Math., 68, 1, 145-254, 1937 ·JFM 63.0547.04
[15]Ramanujan, S., On certain arithmetical functions, Trans. Camb. Philos. Soc., 22, 159-184, 1916 ·Zbl 07426016
[16]Ramanujan, S., The Lost Notebook and Other Unpublished Papers, 1988, Narosa: Narosa New Delhi ·Zbl 0639.01023
[17]Rose, S. C.F., Quasimodularity of generalized sum-of-divisors functions, Res. Number Theory, 1, Article 18 pp., 2015 ·Zbl 1379.11046
[18]Serre, J.-P., A Course in Arithmetic, 1973, Springer-Verlag: Springer-Verlag New York ·Zbl 0256.12001
[19]Serre, J.-P., Formes Modulaires et Fonctions Zêta p-Adiques, Lect. Notes, vol. 350, 191-268, 1973, Springer ·Zbl 0277.12014
[20]Serre, J.-P., Divisibilité de certaines fonctions arithmétiques, Enseign. Math., 22, 227-260, 1976 ·Zbl 0355.10021
[21]Sturm, J., On the Congruence of Modular Forms, Lect. Notes in Math., vol. 1240, 275-280, 1984, Springer ·Zbl 0615.10035
[22]Swinnerton-Dyer, H. P.F., On ℓ-adic representations and congruences for coefficients of modular forms, (Springer Lect. Notes, vol. 350, 1973), 1-55 ·Zbl 0267.10032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp