[1] | Ahern, P. R.; Clark, D. N., On inner functions with \(H_p\)-derivative, Mich. Math. J., 21, 2, 115-127, 1974 ·Zbl 0277.30027 |
[2] | Ahlfors, L. V., Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, International Series in Pure and Applied Mathematics, 1978, McGraw-Hill Book Co.: McGraw-Hill Book Co. New York |
[3] | Aldaz, J. M., A general covering lemma for the real line, Real Anal. Exch., 17, 1, 394-398, 1991/1992 ·Zbl 0757.26007 |
[4] | Armitage, D. H.; Gardiner, S. J., Classical Potential Theory, Springer Monographs in Mathematics, 2001, Springer: Springer London ·Zbl 0972.31001 |
[5] | Bass, R., Probabilistic Techniques in Analysis, Probability and Its Applications, 1995, Springer: Springer New York ·Zbl 0817.60001 |
[6] | Berman, R.; Brown, L.; Cohn, W., Cyclic vectors of bounded characteristic in Bergman spaces, Mich. Math. J., 31, 295-306, 1984 ·Zbl 0594.30037 |
[7] | Betsakos, D.; Karamanlis, N., Conformal invariants and the angular derivative problem, J. Lond. Math. Soc., 105, 1, 587-620, 2022 ·Zbl 1528.30004 |
[8] | Bishop, C. J., An indestructible Blaschke product in the little Bloch space, Publ. Mat., 37, 1, 95-109, 1993 ·Zbl 0810.30024 |
[9] | Collingwood, E. F.; Lohwater, A. J., The Theory of Cluster Sets, 1966, Cambridge University Press ·Zbl 0149.03003 |
[10] | Craizer, M., Entropy of inner functions, Isr. J. Math., 74, 2, 129-168, 1991 ·Zbl 0744.30024 |
[11] | Dyakonov, K. M., A characterization of Möbius transformations, C. R. Math. Acad. Sci. Paris, 352, 2, 593-595, 2014 ·Zbl 1297.30079 |
[12] | El-Fallah, O.; Elmadani, Y.; Kellay, K., Kernel and capacity estimates in Dirichlet spaces, J. Funct. Anal., 276, 3, 867-895, 2019 ·Zbl 1416.46028 |
[13] | El-Fallah, O.; Elmadani, Y.; Labghail, I., Extremal functions and invariant subspaces in Dirichlet spaces, Adv. Math., 408, Article 108604 pp., 2022 ·Zbl 07588417 |
[14] | Fary, I.; Isenberg, E. M., On a converse of the Jordan curve theorem, Am. Math. Mon., 81, 6, 636-639, 1974 ·Zbl 0287.54037 |
[15] | Garnett, J. B.; Marshall, D. E., Harmonic Measure, New Mathematical Monographs 2, 2005, Cambridge University Press ·Zbl 1077.31001 |
[16] | Heins, M., On a class of conformal metrics, Nagoya Math. J., 21, 1-60, 1962 ·Zbl 0113.05603 |
[17] | Ivrii, O., Prescribing inner parts of derivatives of inner functions, J. Anal. Math., 139, 495-519, 2019 ·Zbl 1460.30019 |
[18] | Ivrii, O., Stable convergence of inner functions, J. Lond. Math. Soc., 102, 257-286, 2020 ·Zbl 1456.30096 |
[19] | Kraus, D.; Roth, O., Composition and decomposition of indestructible Blaschke products, Comput. Methods Funct. Theory, 13, 253-262, 2013 ·Zbl 1280.30024 |
[20] | Mashreghi, J., Derivatives of Inner Functions, 2012, Fields Institute Monographs |
[21] | Mashreghi, J.; Ransford, T., Approximation in the closed unit ball, (Mashreghi, J.; Manolaki, M.; Gauthier, P., New Trends in Approximation Theory. New Trends in Approximation Theory, Fields Institute Communications, vol. 81, 2018), 89-129 ·Zbl 1412.30147 |
[22] | McMullen, C. T., Ribbon \(\mathbb{R} \)-trees and holomorphic dynamics on the unit disk, J. Topol., 2, 23-76, 2009 ·Zbl 1173.37043 |
[23] | Munkres, J. R., Topology, a First Course, 2000, Prentice-Hall: Prentice-Hall Upper Saddle River, NJ ·Zbl 0306.54001 |
[24] | Poltoratski, A.; Sarason, D., Aleksandrov-Clark measures, (Matheson, A. L.; Stessin, M. I.; Timoney, R. M., Recent Advances in Operator-Related Function Theory. Recent Advances in Operator-Related Function Theory, Contemp. Math., vol. 393, 2006, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-14 ·Zbl 1102.30032 |
[25] | Pommerenke, C., On the Green’s function of Fuchsian groups, Ann. Acad. Sci. Fenn., Math., 2, 409-427, 1976 ·Zbl 0363.30029 |
[26] | Rohde, S.; Wong, C., Half-plane capacity and conformal radius, Proc. Am. Math. Soc., 142, 3, 931-938, 2014 ·Zbl 1283.30058 |
[27] | Saksman, E., An elementary introduction to Clark measures, (Girela Álvarez, D.; González Enríquez, C., Topics in Complex Analysis and Operator Theory, 2007, Univ. Málaga: Univ. Málaga Málaga), 85-136 ·Zbl 1148.47001 |
[28] | Warschawski, S. E., On the degree of variation in conformal mapping of variable regions, Trans. Am. Math. Soc., 69, 2, 335-356, 1950 ·Zbl 0041.05102 |