Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Rigidity results for \(L^p\)-operator algebras and applications.(English)Zbl 07916593

Summary: For \(p \in [1, \infty)\), we show that every unital \(L^p\)-operator algebra contains a unique maximal \(C^\ast\)-subalgebra, which is always abelian if \(p \neq 2\). Using this, we canonically associate to every unital \(L^p\)-operator algebra \(A\) an étale groupoid \(\mathcal{G}_A\), which in many cases of interest is a complete invariant for \(A\). By identifying this groupoid for large classes of examples, we obtain a number of rigidity results that display a stark contrast with the case \(p = 2\); the most striking one being that of crossed products by topologically free actions.
Our rigidity results give answers to questions concerning the existence of isomorphisms between different algebras. Among others, we show that for the \(L^p\)-analog \(\mathcal{O}_2^p\) of the Cuntz algebra, there is no isometric isomorphism between \(\mathcal{O}_2^p\) and \(\mathcal{O}_2^p \otimes^p \mathcal{O}_2^p\), when \(p \neq 2\). In particular, we deduce that there is no \(L^p\)-version of Kirchberg’s absorption theorem, and that there is no \(K\)-theoretic classification of purely infinite simple amenable \(L^p\)-operator algebras for \(p \neq 2\). Our methods also allow us to recover a folklore fact in the case of \(\mathrm{C}^\ast\)-algebras (\(p = 2\)), namely that no isomorphism \(\mathcal{O}_2 \cong \mathcal{O}_2 \otimes \mathcal{O}_2\) preserves the canonical Cartan subalgebras.

MSC:

46L05 General theory of \(C^*\)-algebras
47L10 Algebras of operators on Banach spaces and other topological linear spaces
22A22 Topological groupoids (including differentiable and Lie groupoids)
43A65 Representations of groups, semigroups, etc. (aspects of abstract harmonic analysis)

Cite

References:

[1]Anantharaman-Delaroche, C., Amenability and exactness for dynamical systems and their \(C^\ast \)-algebras, Trans. Am. Math. Soc., 354, 4153-4178, 2002 ·Zbl 1035.46039
[2]Ara, P.; Cortiñas, G., Tensor products of Leavitt path algebras, Proc. Am. Math. Soc., 141, 2629-2639, 2013 ·Zbl 1277.16010
[3]Aranda Pino, G.; Goodearl, K. R.; Perera, F.; Siles Molina, M., Non-simple purely infinite rings, Am. J. Math., 132, 563-610, 2010 ·Zbl 1206.16003
[4]Banakh, I.; Banakh, T., On the asymptotic dimension of products of coarse spaces, Topol. Appl., 311, Article 107953 pp., 2022 ·Zbl 1537.51007
[5]Bell, G.; Dranishnikov, A., Asymptotic dimension, Topol. Appl., 155, 1265-1296, 2008 ·Zbl 1149.54017
[6]Blecher, D. P.; Phillips, N. C., \( L^p\)-operator algebras with approximate identities, I, Pac. J. Math., 303, 401-457, 2019 ·Zbl 1503.47120
[7]Bonsall, F. F.; Duncan, J., Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Mathematical Society Lecture Note Series, vol. 2, 1971, Cambridge University Press: Cambridge University Press London-New York ·Zbl 0207.44802
[8]Braga, B. M.; Vignati, A., On the uniform Roe algebra as a Banach algebra and embeddings of \(\ell_p\) uniform Roe algebras, Bull. Lond. Math. Soc., 52, 853-870, 2020 ·Zbl 1467.46019
[9]Choi, Y., Directly finite algebras of pseudofunctions on locally compact groups, Glasg. Math. J., 57, 693-707, 2015 ·Zbl 1405.22005
[10]Chung, Y. C.; Li, K., Rigidity of \(\ell^p\) Roe-type algebras, Bull. Lond. Math. Soc., 50, 1056-1070, 2018 ·Zbl 1417.46037
[11]Cortiñas, G.; Rodríguez, M. E., \( L^p\)-operator algebras associated with oriented graphs, J. Oper. Theory, 81, 225-254, 2019 ·Zbl 1424.47167
[12]Cowling, M., The predual of the space of convolutors on a locally compact group, Bull. Aust. Math. Soc., 57, 409-414, 1998 ·Zbl 0909.43001
[13]Cuntz, J., Automorphisms of certain simple \(C^\ast \)-algebras, (Quantum Fields—Algebras, Processes, Proc. Sympos.. Quantum Fields—Algebras, Processes, Proc. Sympos., Univ. Bielefeld, Bielefeld, 1978, 1980, Springer: Springer Vienna), 187-196 ·Zbl 0475.46046
[14]Cuntz, J., Simple \(C^\ast \)-algebras generated by isometries, Commun. Math. Phys., 57, 173-185, 1977 ·Zbl 0399.46045
[15]Daws, M.; Horváth, B., A purely infinite Cuntz-like Banach ⁎-algebra with no purely infinite ultrapowers, J. Funct. Anal., 283, Article 109488 pp., 2022 ·Zbl 1498.46074
[16]Daws, M.; Spronk, N., On convoluters on \(L^p\)-spaces, Stud. Math., 245, 15-31, 2019 ·Zbl 1428.43003
[17]Derighetti, A., Convolution Operators on Groups, Lecture Notes of the Unione Matematica Italiana, vol. 11, 2011, Springer: Springer Heidelberg, UMI, Bologna ·Zbl 1233.43001
[18]Fremlin, D. H., Measure theory, vol. 2, (Broad Foundations, 2003, Torres Fremlin: Torres Fremlin Colchester), Corrected second printing of the 2001 original ·Zbl 1165.28001
[19]Fremlin, D. H., Measure theory. Vol. 3. Part 1, (Measure Theory, 2004, Torres Fremlin: Torres Fremlin Colchester), Corrected second printing of the 2002 original ·Zbl 1165.28002
[20]Fremlin, D. H., Measure theory. Vol. 3. Part 2, (Measure Theory, 2004, Torres Fremlin: Torres Fremlin Colchester), Corrected second printing of the 2002 original ·Zbl 1165.28002
[21]Gardella, E., A modern look at algebras of operators on \(L^p\)-spaces, Expo. Math., 39, 420-453, 2021 ·Zbl 1487.22006
[22]Gardella, E.; Geffen, S.; Kranz, J.; Naryshkin, P., Classifiability of crossed products by nonamenable groups, J. Reine Angew. Math., 797, 285-312, 2023 ·Zbl 1521.46023
[23]E. Gardella, J. Gundelach, Embeddings of \(L^p\)-operator algebras, 2024, in preparation.
[24]Gardella, E.; Lupini, M., Nonclassifiability of UHF \(L^p\)-operator algebras, Proc. Am. Math. Soc., 144, 2081-2091, 2016 ·Zbl 1337.47105
[25]Gardella, E.; Lupini, M., Representations of étale groupoids on \(L^p\)-spaces, Adv. Math., 318, 233-278, 2017 ·Zbl 06769054
[26]Gardella, E.; Thiel, H., Banach algebras generated by an invertible isometry of an \(L^p\)-space, J. Funct. Anal., 269, 1796-1839, 2015 ·Zbl 1334.46040
[27]Gardella, E.; Thiel, H., Group algebras acting on \(L^p\)-spaces, J. Fourier Anal. Appl., 21, 1310-1343, 2015 ·Zbl 1334.22007
[28]Gardella, E.; Thiel, H., Representations of p-convolution algebras on \(L^q\)-spaces, Trans. Am. Math. Soc., 371, 2207-2236, 2019 ·Zbl 1461.43002
[29]Gardella, E.; Thiel, H., Extending representations of Banach algebras to their biduals, Math. Z., 294, 1341-1354, 2020 ·Zbl 1456.46042
[30]Gardella, E.; Thiel, H., Isomorphisms of algebras of convolution operators, Ann. Sci. Éc. Norm. Supér. (4), 55, 1433-1471, 2022 ·Zbl 1510.22003
[31]Kirchberg, E.; Phillips, N. C., Embedding of exact \(C^\ast \)-algebras in the Cuntz algebra \(\mathcal{O}_2\), J. Reine Angew. Math., 525, 17-53, 2000 ·Zbl 0973.46048
[32]Lacey, H. E., The Isometric Theory of Classical Banach Spaces, Die Grundlehren der mathematischen Wissenschaften, vol. 208, 1974, Springer-Verlag: Springer-Verlag New York-Heidelberg ·Zbl 0285.46024
[33]Lamperti, J., On the isometries of certain function-spaces, Pac. J. Math., 8, 459-466, 1958 ·Zbl 0085.09702
[34]Lau, A. T.-M.; Loy, R. J., Contractive projections on Banach algebras, J. Funct. Anal., 254, 2513-2533, 2008 ·Zbl 1149.46040
[35]Li, X., Continuous orbit equivalence rigidity, Ergod. Theory Dyn. Syst., 38, 1543-1563, 2018 ·Zbl 1390.37007
[36]Mbekhta, M., Partial isometries and generalized inverses, Acta Sci. Math., 70, 767-781, 2004 ·Zbl 1087.47001
[37]Medynets, K.; Sauer, R.; Thom, A., Cantor systems and quasi-isometry of groups, Bull. Lond. Math. Soc., 49, 709-724, 2017 ·Zbl 1377.37020
[38]Phillips, N. C., A classification theorem for nuclear purely infinite simple \(C^\ast \)-algebras, Doc. Math., 5, 49-114, 2000 ·Zbl 0943.46037
[39]Phillips, N. C., Analogs of Cuntz algebras on \(L^p\) spaces, 2012, preprint
[40]Phillips, N. C., Crossed products of \(L^p\) operator algebras and the K-theory of Cuntz algebras on \(L^p\) spaces, 2013, preprint
[41]Phillips, N. C.; Viola, M. G., Classification of spatial \(L^p\) AF algebras, Int. J. Math., 31, Article 2050088 pp., 2020 ·Zbl 07301539
[42]Ramsay, A., Topologies on measured groupoids, J. Funct. Anal., 47, 314-343, 1982 ·Zbl 0519.22003
[43]Renault, J., A Groupoid Approach to \(C^\ast \)-Algebras, Lecture Notes in Mathematics, vol. 793, 1980, Springer: Springer Berlin ·Zbl 0433.46049
[44]Renault, J., Cartan subalgebras in \(C^\ast \)-algebras, Ir. Math. Soc. Bull., 29-63, 2008 ·Zbl 1175.46050
[45]Rørdam, M., A short proof of Elliott’s theorem: \( \mathcal{O}_2 \otimes \mathcal{O}_2 \cong \mathcal{O}_2\), C. R. Math. Rep. Acad. Sci. Canada, 16, 31-36, 1994 ·Zbl 0817.46061
[46]Runde, V., Representations of locally compact groups on \(\operatorname{QSL}_p\)-spaces and a p-analog of the Fourier-Stieltjes algebra, Pac. J. Math., 221, 379-397, 2005 ·Zbl 1095.43001
[47]Sims, A., Étale groupoids and their \(C^\ast \)-algebras, 2017, preprint
[48]Tam, K. W., Isometries of certain function spaces, Pac. J. Math., 31, 233-246, 1969 ·Zbl 0189.43104
[49]Tzafriri, L., Remarks on contractive projections in \(L_p\)-spaces, Isr. J. Math., 7, 9-15, 1969 ·Zbl 0184.15103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp