[1] | Anantharaman-Delaroche, C., Amenability and exactness for dynamical systems and their \(C^\ast \)-algebras, Trans. Am. Math. Soc., 354, 4153-4178, 2002 ·Zbl 1035.46039 |
[2] | Ara, P.; Cortiñas, G., Tensor products of Leavitt path algebras, Proc. Am. Math. Soc., 141, 2629-2639, 2013 ·Zbl 1277.16010 |
[3] | Aranda Pino, G.; Goodearl, K. R.; Perera, F.; Siles Molina, M., Non-simple purely infinite rings, Am. J. Math., 132, 563-610, 2010 ·Zbl 1206.16003 |
[4] | Banakh, I.; Banakh, T., On the asymptotic dimension of products of coarse spaces, Topol. Appl., 311, Article 107953 pp., 2022 ·Zbl 1537.51007 |
[5] | Bell, G.; Dranishnikov, A., Asymptotic dimension, Topol. Appl., 155, 1265-1296, 2008 ·Zbl 1149.54017 |
[6] | Blecher, D. P.; Phillips, N. C., \( L^p\)-operator algebras with approximate identities, I, Pac. J. Math., 303, 401-457, 2019 ·Zbl 1503.47120 |
[7] | Bonsall, F. F.; Duncan, J., Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Mathematical Society Lecture Note Series, vol. 2, 1971, Cambridge University Press: Cambridge University Press London-New York ·Zbl 0207.44802 |
[8] | Braga, B. M.; Vignati, A., On the uniform Roe algebra as a Banach algebra and embeddings of \(\ell_p\) uniform Roe algebras, Bull. Lond. Math. Soc., 52, 853-870, 2020 ·Zbl 1467.46019 |
[9] | Choi, Y., Directly finite algebras of pseudofunctions on locally compact groups, Glasg. Math. J., 57, 693-707, 2015 ·Zbl 1405.22005 |
[10] | Chung, Y. C.; Li, K., Rigidity of \(\ell^p\) Roe-type algebras, Bull. Lond. Math. Soc., 50, 1056-1070, 2018 ·Zbl 1417.46037 |
[11] | Cortiñas, G.; Rodríguez, M. E., \( L^p\)-operator algebras associated with oriented graphs, J. Oper. Theory, 81, 225-254, 2019 ·Zbl 1424.47167 |
[12] | Cowling, M., The predual of the space of convolutors on a locally compact group, Bull. Aust. Math. Soc., 57, 409-414, 1998 ·Zbl 0909.43001 |
[13] | Cuntz, J., Automorphisms of certain simple \(C^\ast \)-algebras, (Quantum Fields—Algebras, Processes, Proc. Sympos.. Quantum Fields—Algebras, Processes, Proc. Sympos., Univ. Bielefeld, Bielefeld, 1978, 1980, Springer: Springer Vienna), 187-196 ·Zbl 0475.46046 |
[14] | Cuntz, J., Simple \(C^\ast \)-algebras generated by isometries, Commun. Math. Phys., 57, 173-185, 1977 ·Zbl 0399.46045 |
[15] | Daws, M.; Horváth, B., A purely infinite Cuntz-like Banach ⁎-algebra with no purely infinite ultrapowers, J. Funct. Anal., 283, Article 109488 pp., 2022 ·Zbl 1498.46074 |
[16] | Daws, M.; Spronk, N., On convoluters on \(L^p\)-spaces, Stud. Math., 245, 15-31, 2019 ·Zbl 1428.43003 |
[17] | Derighetti, A., Convolution Operators on Groups, Lecture Notes of the Unione Matematica Italiana, vol. 11, 2011, Springer: Springer Heidelberg, UMI, Bologna ·Zbl 1233.43001 |
[18] | Fremlin, D. H., Measure theory, vol. 2, (Broad Foundations, 2003, Torres Fremlin: Torres Fremlin Colchester), Corrected second printing of the 2001 original ·Zbl 1165.28001 |
[19] | Fremlin, D. H., Measure theory. Vol. 3. Part 1, (Measure Theory, 2004, Torres Fremlin: Torres Fremlin Colchester), Corrected second printing of the 2002 original ·Zbl 1165.28002 |
[20] | Fremlin, D. H., Measure theory. Vol. 3. Part 2, (Measure Theory, 2004, Torres Fremlin: Torres Fremlin Colchester), Corrected second printing of the 2002 original ·Zbl 1165.28002 |
[21] | Gardella, E., A modern look at algebras of operators on \(L^p\)-spaces, Expo. Math., 39, 420-453, 2021 ·Zbl 1487.22006 |
[22] | Gardella, E.; Geffen, S.; Kranz, J.; Naryshkin, P., Classifiability of crossed products by nonamenable groups, J. Reine Angew. Math., 797, 285-312, 2023 ·Zbl 1521.46023 |
[23] | E. Gardella, J. Gundelach, Embeddings of \(L^p\)-operator algebras, 2024, in preparation. |
[24] | Gardella, E.; Lupini, M., Nonclassifiability of UHF \(L^p\)-operator algebras, Proc. Am. Math. Soc., 144, 2081-2091, 2016 ·Zbl 1337.47105 |
[25] | Gardella, E.; Lupini, M., Representations of étale groupoids on \(L^p\)-spaces, Adv. Math., 318, 233-278, 2017 ·Zbl 06769054 |
[26] | Gardella, E.; Thiel, H., Banach algebras generated by an invertible isometry of an \(L^p\)-space, J. Funct. Anal., 269, 1796-1839, 2015 ·Zbl 1334.46040 |
[27] | Gardella, E.; Thiel, H., Group algebras acting on \(L^p\)-spaces, J. Fourier Anal. Appl., 21, 1310-1343, 2015 ·Zbl 1334.22007 |
[28] | Gardella, E.; Thiel, H., Representations of p-convolution algebras on \(L^q\)-spaces, Trans. Am. Math. Soc., 371, 2207-2236, 2019 ·Zbl 1461.43002 |
[29] | Gardella, E.; Thiel, H., Extending representations of Banach algebras to their biduals, Math. Z., 294, 1341-1354, 2020 ·Zbl 1456.46042 |
[30] | Gardella, E.; Thiel, H., Isomorphisms of algebras of convolution operators, Ann. Sci. Éc. Norm. Supér. (4), 55, 1433-1471, 2022 ·Zbl 1510.22003 |
[31] | Kirchberg, E.; Phillips, N. C., Embedding of exact \(C^\ast \)-algebras in the Cuntz algebra \(\mathcal{O}_2\), J. Reine Angew. Math., 525, 17-53, 2000 ·Zbl 0973.46048 |
[32] | Lacey, H. E., The Isometric Theory of Classical Banach Spaces, Die Grundlehren der mathematischen Wissenschaften, vol. 208, 1974, Springer-Verlag: Springer-Verlag New York-Heidelberg ·Zbl 0285.46024 |
[33] | Lamperti, J., On the isometries of certain function-spaces, Pac. J. Math., 8, 459-466, 1958 ·Zbl 0085.09702 |
[34] | Lau, A. T.-M.; Loy, R. J., Contractive projections on Banach algebras, J. Funct. Anal., 254, 2513-2533, 2008 ·Zbl 1149.46040 |
[35] | Li, X., Continuous orbit equivalence rigidity, Ergod. Theory Dyn. Syst., 38, 1543-1563, 2018 ·Zbl 1390.37007 |
[36] | Mbekhta, M., Partial isometries and generalized inverses, Acta Sci. Math., 70, 767-781, 2004 ·Zbl 1087.47001 |
[37] | Medynets, K.; Sauer, R.; Thom, A., Cantor systems and quasi-isometry of groups, Bull. Lond. Math. Soc., 49, 709-724, 2017 ·Zbl 1377.37020 |
[38] | Phillips, N. C., A classification theorem for nuclear purely infinite simple \(C^\ast \)-algebras, Doc. Math., 5, 49-114, 2000 ·Zbl 0943.46037 |
[39] | Phillips, N. C., Analogs of Cuntz algebras on \(L^p\) spaces, 2012, preprint |
[40] | Phillips, N. C., Crossed products of \(L^p\) operator algebras and the K-theory of Cuntz algebras on \(L^p\) spaces, 2013, preprint |
[41] | Phillips, N. C.; Viola, M. G., Classification of spatial \(L^p\) AF algebras, Int. J. Math., 31, Article 2050088 pp., 2020 ·Zbl 07301539 |
[42] | Ramsay, A., Topologies on measured groupoids, J. Funct. Anal., 47, 314-343, 1982 ·Zbl 0519.22003 |
[43] | Renault, J., A Groupoid Approach to \(C^\ast \)-Algebras, Lecture Notes in Mathematics, vol. 793, 1980, Springer: Springer Berlin ·Zbl 0433.46049 |
[44] | Renault, J., Cartan subalgebras in \(C^\ast \)-algebras, Ir. Math. Soc. Bull., 29-63, 2008 ·Zbl 1175.46050 |
[45] | Rørdam, M., A short proof of Elliott’s theorem: \( \mathcal{O}_2 \otimes \mathcal{O}_2 \cong \mathcal{O}_2\), C. R. Math. Rep. Acad. Sci. Canada, 16, 31-36, 1994 ·Zbl 0817.46061 |
[46] | Runde, V., Representations of locally compact groups on \(\operatorname{QSL}_p\)-spaces and a p-analog of the Fourier-Stieltjes algebra, Pac. J. Math., 221, 379-397, 2005 ·Zbl 1095.43001 |
[47] | Sims, A., Étale groupoids and their \(C^\ast \)-algebras, 2017, preprint |
[48] | Tam, K. W., Isometries of certain function spaces, Pac. J. Math., 31, 233-246, 1969 ·Zbl 0189.43104 |
[49] | Tzafriri, L., Remarks on contractive projections in \(L_p\)-spaces, Isr. J. Math., 7, 9-15, 1969 ·Zbl 0184.15103 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.