[1] | R. P. Agarwal, Y. Liu, D. O’Regan, and C. Tian, “Positive solutions of two-point boundary value problems for fractional singular differential equations,” Differ. Equ., vol. 48, no. 5, pp. 619-629, 2012, translation of Differ. Uravn. 48 (2012), no. 5, 611-621. ·Zbl 1263.34009 |
[2] | R. P. Agarwal, M. Bohner, and A. Özbekler, Lyapunov inequalities and applications. Springer, Cham, 2021, doi: 10.1007/978-3-030-69029-8. ·Zbl 1470.35001 ·doi:10.1007/978-3-030-69029-8 |
[3] | M. F. Aktaş and D. Çakmak, “Lyapunov-type inequalities for third-order linear differential equations,” Electron. J. Differential Equations, 2017, Art. ID 139. ·Zbl 1370.34056 |
[4] | M. F. Aktaş and D. Çakmak, “Lyapunov-type inequalities for third-order linear differential equations under the non-conjugate boundary conditions,” Differ. Equ. Appl., vol. 10, no. 2, pp. 219-226, 2018, doi: 10.7153/dea-2018-10-14. ·Zbl 1400.34029 ·doi:10.7153/dea-2018-10-14 |
[5] | M. F. Aktaş and D. Çakmak, “Lyapunov-type inequalities for third order linear differential equations with two points boundary conditions,” Hacet. J. Math. Stat., vol. 48, no. 1, pp. 59-66, 2019, doi: 10.15672/hjms.2017.514. ·Zbl 1471.34063 ·doi:10.15672/hjms.2017.514 |
[6] | M. Bohner, A. Domoshnitsky, S. Padhi, and S. N. Srivastava, “Vallée-Poussin theorem for equations with Caputo fractional derivative,” Math. Slovaca, vol. 73, no. 3, pp. 713-728, 2023, doi: 10.1515/ms-2023-0052. ·Zbl 1516.34098 ·doi:10.1515/ms-2023-0052 |
[7] | I. Cabrera, B. Lopez, and K. Sadarangani, “Lyapunov type inequalities for a fractional two-point boundary value problem,” Math. Methods Appl. Sci., vol. 40, no. 10, pp. 3409-3414, 2017, doi: 10.1002/mma.4232. ·Zbl 1375.34004 ·doi:10.1002/mma.4232 |
[8] | S. Dhar and Q. Kong, “Lyapunov-type inequalities for third-order linear differential equations,” Math. Inequal. Appl., vol. 19, no. 1, pp. 297-312, 2016, doi: 10.7153/mia-19-22. ·Zbl 1345.34029 ·doi:10.7153/mia-19-22 |
[9] | S. Dhar and Q. Kong, “Fractional Lyapunov-type inequalities with mixed boundary conditions on univariate and multivariate domains,” J. Fract. Calc. Appl., vol. 11, no. 2, pp. 148-159, 2020. ·Zbl 1499.34042 |
[10] | A. Domoshnitsky, S. Padhi, and S. N. Srivastava, “Vallée-Poussin theorem for fractional func-tional differential equations,” Fract. Calc. Appl. Anal., vol. 25, no. 4, pp. 1630-1650, 2022, doi: 10.1007/s13540-022-00061-z. ·Zbl 1503.34143 ·doi:10.1007/s13540-022-00061-z |
[11] | J. R. Graef, K. Maazouz, and M. D. A. Zaak, “A generalized Lyapunov inequality for a pan-tograph boundary value problem involving a variable order Hadamard fractional derivative,” Mathematics, vol. 11, no. 13, 2023, Art. ID 2984, doi: 10.3390/math11132984. CUBO 26, 2 (2024) ·doi:10.3390/math11132984 |
[12] | J. R. Graef, R. Mahmoud, S. H. Saker, and E. Tunç, “Some new Lyapunov-type inequalities for third order differential equations,” Comm. Appl. Nonlinear Anal., vol. 22, no. 2, pp. 1-16, 2015. ·Zbl 1326.34042 |
[13] | A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differ-ential equations, ser. North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam, 2006, vol. 204. ·Zbl 1092.45003 |
[14] | A. M. Lyapunov, “Probléme général de la stabilité du mouvement,” Ann. Fac. Sci. Toulouse Math., vol. 9, pp. 203-474, 1907. ·JFM 38.0738.07 |
[15] | Q. Ma, C. Ma, and J. Wang, “A Lyapunov-type inequality for a fractional differential equa-tion with Hadamard derivative,” J. Math. Inequal., vol. 11, no. 1, pp. 135-141, 2017, doi: 10.7153/jmi-11-13. ·Zbl 1361.34009 ·doi:10.7153/jmi-11-13 |
[16] | A. D. Oğuz, J. Alzabut, A. Özbekler, and J. M. Jonnalagadda, “Lyapunov and Hartman-type inequalities for higher-order discrete fractional boundary value problems,” Miskolc Math. Notes, vol. 24, no. 2, pp. 953-963, 2023, doi: 10.18514/mmn.2023.3931. ·Zbl 1549.39012 ·doi:10.18514/mmn.2023.3931 |
[17] | N. Parhi and S. Panigrahi, “On Liapunov-type inequality for third-order differential equations,” J. Math. Anal. Appl., vol. 233, no. 2, pp. 445-460, 1999, doi: 10.1006/jmaa.1999.6265. ·Zbl 0932.34030 ·doi:10.1006/jmaa.1999.6265 |
[18] | I. Podlubny, Fractional differential equations, ser. Mathematics in Science and Engineering. Academic Press, Inc., San Diego, CA, 1999, vol. 198. ·Zbl 0924.34008 |
[19] | T. Qiu and Z. Bai, “Existence of positive solutions for singular fractional differential equations,” Electron. J. Differential Equations, 2008, Art. ID 146. ·Zbl 1172.34313 |
[20] | T. Qiu and Z. Bai, “Positive solutions for boundary value problem of nonlinear frac-tional differential equation,” J. Nonlinear Sci. Appl., vol. 1, no. 3, pp. 123-131, 2008, doi: 10.22436/jnsa.001.03.01. ·Zbl 1173.34314 ·doi:10.22436/jnsa.001.03.01 |
[21] | J. Rong and C. Bai, “Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions,” Adv. Difference Equ., 2015, Art. ID 82, doi: 10.1186/s13662-015-0430-x. ·Zbl 1343.34021 ·doi:10.1186/s13662-015-0430-x |
[22] | S. N. Srivastava, S. Pati, S. Padhi, and A. Domoshnitsky, “Lyapunov inequality for a Caputo fractional differential equation with Riemann-Stieltjes integral boundary conditions,” Math. Methods Appl. Sci., vol. 46, no. 12, pp. 13 110-13 123, 2023, doi: 10.1002/mma.9238. ·Zbl 1528.34010 ·doi:10.1002/mma.9238 |
[23] | Y. Sun and X. Zhang, “Existence and nonexistence of positive solutions for fractional-order two-point boundary value problems,” Adv. Difference Equ., 2014, Art. ID 53, doi: 10.1186/1687-1847-2014-53. ·Zbl 1343.34022 ·doi:10.1186/1687-1847-2014-53 |
[24] | C. Tian and Y. Liu, “Multiple positive solutions for a class of fractional singular boundary value problems,” Mem. Differ. Equ. Math. Phys., vol. 56, pp. 115-131, 2012. ·Zbl 1298.34019 |