[1] | Y. An and M. Han, On the number of limit cycles near a homoclinic loop with a nilpotent singular point, J. Diff. Eqs., 2015, 258(9), 3194-3247. ·Zbl 1332.34059 |
[2] | Y. An and C. Wang, Bifurcation of one-parameter periodic orbits of three-dimensional differential system, Int. J. Bifurcation and Chaos., 2014, 23, 1350121. |
[3] | A. Buica, I. A. Garcia, and S. Maza, Centers in a Quadratic System Obtained from a Scalar Third Order Differential Equation,in: S. Pinelas, M. Chipot, Z. Dosla (Eds), Differential and Difference Equations with Applications, Springer Proc. Math. Stat., Springer, New York, 2013, pp. 405-410. ·Zbl 1320.34047 |
[4] | A. Buica, I. A. Garcia and S. Maza, Multiple hopf bifurcation in R 3 and inverse Jacobi multipliers, J. Diff. Eqs., 2014, 256(1), 310-325. ·Zbl 1346.37050 |
[5] | H. Chen, Y. Liu and X. Zeng, Center conditions and bifurcation of limit cycles at degenerate singular points in a quintic polynomial differential system, Bull. Sci. Math., 2005, 129(2), 127-138. ·Zbl 1083.34027 |
[6] | X. Cen, Y. Zhao and H. Liang, Abelian integrals and limit cycles for a class of cubic polynomial vector fields of Lotka-Volterra type with a rational first integral of degree two, J. Math. Anal. Appl., 2015, 425(2), 788-806. ·Zbl 1320.37041 |
[7] | C. Du, W. Huang and Q. Zhang, Center problem and the bifurcation of limit cycles for a cubic polynomial system, Appl. Math. Model., 2015, 39(17), 5200-5215. ·Zbl 1443.34028 |
[8] | C. Du, Y. Liu and W. Huang, Limit cycles bifurcations for a class of Kolmogorov model in symmetrical vector field, Int. J. Bifurcation and Chaos., 2014, 24(4), 1450040. ·Zbl 1296.34095 |
[9] | C. Du, Y. Liu and W. Huang, Limit cycles bifurcations behavior for a class of quartic Kolmogorov model in symmetrical vector field, Appl. Math. Model., 2016, 40(5-6), 4094-4108. ·Zbl 1459.34084 |
[10] | C. Du, Y. Liu and Q. Zhang, Limit cycles in a class of quartic Kolmogorov model with three positive equilibrium points, Int. J. Bifurcation and Chaos., 2015, 25(4), 1550080. ·Zbl 1317.34036 |
[11] | C. Du, Q. Wang and W. Huang, Three-Dimensional hopf bifurcation for a class of cubic Kolmogorov model, Int. J. Bifurcation and Chaos., 2014, 24(3), 1450036. ·Zbl 1296.34096 |
[12] | C. Du, Q. Wang and Y. Liu, Limit cycles bifurcations for a class of 3-Dimensional quadratic systems, Acta Appl. Math., 2015, 136, 1-18. ·Zbl 1320.34050 |
[13] | A. Gasull, C. Li and J. Torregrosa, Limit cycles for 3-monomial differential equations, J. Math. Anal. Appl., 2015, 428(2), 735-749. ·Zbl 1323.34037 |
[14] | F. Geng and H. Lian, Bifurcation of limit cycles from a quasi-Homogeneous degenerate center, Int. J. Bifurcation and Chaos., 2015, 25(1), 1550007. ·Zbl 1309.34066 |
[15] | Z. Hu, M. Aldazharova, T. M. Aldibekov and V. G. Romanovski, Integrability of 3-dim polynomial systems with three invariant planes, Nonlinear Dynam., 2013, 74(8), 1077-1092. ·Zbl 1284.34003 |
[16] | Z. Hu, M. Han and V. G. Romanovski, Local integrability of a family of three-dimensional quadratic systems, Phys. D., 2013, 265, 78-86. ·Zbl 1286.37058 |
[17] | M. Han and W. Lu, Hopf bifurcation of limit cycles by perturbing piecewise integrable systems, Bulletin. Sci. Math., 2020, 161, 102866. ·Zbl 1448.34080 |
[18] | M. Han and F. Jiang, Qualitative Analysis of Crossing Limit Cycles in Discontinuous LišŠnard-Type Differential Systems, J. Nonl. Mod. Anal., 2019, 1, 527-543. |
[19] | M. Han and S. Liu, Further studies on limit cycle bifurcations for piecewise smooth near-Hamiltonian sysytem with multiple parameters, J. Appl. Anal. Comput., 2020, 10(2), 816-829. ·Zbl 1455.37045 |
[20] | X. Liu and M. Han, Bifurcation of periodic orbits of a three-dimensional system, Chinese Ann. Math., 2005, 26, 253-274. ·Zbl 1091.34022 |
[21] | Y. Liu and J. Li, Z2-equivariant cubic system which yields 13 limit cycles, Acta Math. Appl. Sin. Engl. Ser., 2014, 30, 781-800. ·Zbl 1311.34064 |
[22] | J. Llibre and C. Pantazi, Limit cycles bifurcating from a degenerate center, Math. Comput. Simul., 2016, 120, 1-11. ·Zbl 1540.34072 |
[23] | F. Li, Y. Liu and Y. Liu, Bi-center problem and bifurcation of limit cycles from nilpo-tent singular points in Z2-equivariant cubic vector fields, J.Diff. Eqs., 2018, 265(10), 4965-4992. ·Zbl 1444.34054 |
[24] | F. Li, Y. Liu, Y. Liu and P. Yu, Complex isochronous centers and linearization transformations for cubic Z2-equivariant planar systems, J.Diff. Eqs., 2020, 268(7), 3819-3847. ·Zbl 1511.34041 |
[25] | F. Li, Y. Jin and Y. Tian, Integrability and linearizability of cubic Z2 systems with non-resonant singular points, J. Diff. Eqs., 2020, 269(10), 9026-9049. ·Zbl 1450.37052 |
[26] | F. Li and P. Yu, A note on the paper “Center and isochronous center conditions for switching systems associated with elementary singular points”, Commun. Nonlin. Sci. Numer. Simul., 2020, 90, 105405. ·Zbl 1454.34051 |
[27] | V. G. Romanovski, M. Mencinger and B. Fercec, Investigation of center manifolds of three-dimensional systems using computer algebra, Program. Comput. Softw., 2013, 39, 67-73. ·Zbl 1323.68623 |
[28] | V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Compu-tational Algebra Approach, Birkhauser Boston, Inc. Boston, MA., 2009. ·Zbl 1192.34003 |
[29] | L. Sheng and M. Han, Bifurcation of limit cycle from a compound loop with five saddles, J. Appl. Anal. Comput., 2019, 9(6), 2482-2495. ·Zbl 1459.34085 |
[30] | Y. Wu and C. Zhang, Bifurcation of limit cycles and pseudo-isochronous center at degenerate singular point in a septic system, Appl. Math. Comput., 2012, 218(17), 8513-8525. ·Zbl 1255.34032 |
[31] | P. Yu and M. Han, Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation, Appl. Math. Lett., 2015, 44, 17-20. ·Zbl 1336.34051 |
[32] | P. Yu and Y. Tian, Twelve limit cycles around a singular point in a planar cubic-degree polynomial system, Commun. Nonlin. Sci. Numer. Simul., 2014, 19(8), 2690-2705. ·Zbl 1510.37083 |