Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Hopf bifurcation at a degenerate singular point In 3-dimensional vector field.(English)Zbl 07907314

Summary: The work of this paper focuses on investigating limit cycle bifurcation for a degenerate singular point in 3-Dimensional vector fields. By making two appropriate transformations and making use of singular values methods to compute focal values carefully, we give the expressions of the first five Lyapunov constants at the origin that is a degenerate singular point. Moreover, we obtain the considered system can bifurcate 5 limit cycles near the origin. In terms of results on limit cycle bifurcation from degenerate singular point in 3-Dimensional vector field, it is less seen in published references..

MSC:

34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations

Cite

References:

[1]Y. An and M. Han, On the number of limit cycles near a homoclinic loop with a nilpotent singular point, J. Diff. Eqs., 2015, 258(9), 3194-3247. ·Zbl 1332.34059
[2]Y. An and C. Wang, Bifurcation of one-parameter periodic orbits of three-dimensional differential system, Int. J. Bifurcation and Chaos., 2014, 23, 1350121.
[3]A. Buica, I. A. Garcia, and S. Maza, Centers in a Quadratic System Obtained from a Scalar Third Order Differential Equation,in: S. Pinelas, M. Chipot, Z. Dosla (Eds), Differential and Difference Equations with Applications, Springer Proc. Math. Stat., Springer, New York, 2013, pp. 405-410. ·Zbl 1320.34047
[4]A. Buica, I. A. Garcia and S. Maza, Multiple hopf bifurcation in R 3 and inverse Jacobi multipliers, J. Diff. Eqs., 2014, 256(1), 310-325. ·Zbl 1346.37050
[5]H. Chen, Y. Liu and X. Zeng, Center conditions and bifurcation of limit cycles at degenerate singular points in a quintic polynomial differential system, Bull. Sci. Math., 2005, 129(2), 127-138. ·Zbl 1083.34027
[6]X. Cen, Y. Zhao and H. Liang, Abelian integrals and limit cycles for a class of cubic polynomial vector fields of Lotka-Volterra type with a rational first integral of degree two, J. Math. Anal. Appl., 2015, 425(2), 788-806. ·Zbl 1320.37041
[7]C. Du, W. Huang and Q. Zhang, Center problem and the bifurcation of limit cycles for a cubic polynomial system, Appl. Math. Model., 2015, 39(17), 5200-5215. ·Zbl 1443.34028
[8]C. Du, Y. Liu and W. Huang, Limit cycles bifurcations for a class of Kolmogorov model in symmetrical vector field, Int. J. Bifurcation and Chaos., 2014, 24(4), 1450040. ·Zbl 1296.34095
[9]C. Du, Y. Liu and W. Huang, Limit cycles bifurcations behavior for a class of quartic Kolmogorov model in symmetrical vector field, Appl. Math. Model., 2016, 40(5-6), 4094-4108. ·Zbl 1459.34084
[10]C. Du, Y. Liu and Q. Zhang, Limit cycles in a class of quartic Kolmogorov model with three positive equilibrium points, Int. J. Bifurcation and Chaos., 2015, 25(4), 1550080. ·Zbl 1317.34036
[11]C. Du, Q. Wang and W. Huang, Three-Dimensional hopf bifurcation for a class of cubic Kolmogorov model, Int. J. Bifurcation and Chaos., 2014, 24(3), 1450036. ·Zbl 1296.34096
[12]C. Du, Q. Wang and Y. Liu, Limit cycles bifurcations for a class of 3-Dimensional quadratic systems, Acta Appl. Math., 2015, 136, 1-18. ·Zbl 1320.34050
[13]A. Gasull, C. Li and J. Torregrosa, Limit cycles for 3-monomial differential equations, J. Math. Anal. Appl., 2015, 428(2), 735-749. ·Zbl 1323.34037
[14]F. Geng and H. Lian, Bifurcation of limit cycles from a quasi-Homogeneous degenerate center, Int. J. Bifurcation and Chaos., 2015, 25(1), 1550007. ·Zbl 1309.34066
[15]Z. Hu, M. Aldazharova, T. M. Aldibekov and V. G. Romanovski, Integrability of 3-dim polynomial systems with three invariant planes, Nonlinear Dynam., 2013, 74(8), 1077-1092. ·Zbl 1284.34003
[16]Z. Hu, M. Han and V. G. Romanovski, Local integrability of a family of three-dimensional quadratic systems, Phys. D., 2013, 265, 78-86. ·Zbl 1286.37058
[17]M. Han and W. Lu, Hopf bifurcation of limit cycles by perturbing piecewise integrable systems, Bulletin. Sci. Math., 2020, 161, 102866. ·Zbl 1448.34080
[18]M. Han and F. Jiang, Qualitative Analysis of Crossing Limit Cycles in Discontinuous LišŠnard-Type Differential Systems, J. Nonl. Mod. Anal., 2019, 1, 527-543.
[19]M. Han and S. Liu, Further studies on limit cycle bifurcations for piecewise smooth near-Hamiltonian sysytem with multiple parameters, J. Appl. Anal. Comput., 2020, 10(2), 816-829. ·Zbl 1455.37045
[20]X. Liu and M. Han, Bifurcation of periodic orbits of a three-dimensional system, Chinese Ann. Math., 2005, 26, 253-274. ·Zbl 1091.34022
[21]Y. Liu and J. Li, Z2-equivariant cubic system which yields 13 limit cycles, Acta Math. Appl. Sin. Engl. Ser., 2014, 30, 781-800. ·Zbl 1311.34064
[22]J. Llibre and C. Pantazi, Limit cycles bifurcating from a degenerate center, Math. Comput. Simul., 2016, 120, 1-11. ·Zbl 1540.34072
[23]F. Li, Y. Liu and Y. Liu, Bi-center problem and bifurcation of limit cycles from nilpo-tent singular points in Z2-equivariant cubic vector fields, J.Diff. Eqs., 2018, 265(10), 4965-4992. ·Zbl 1444.34054
[24]F. Li, Y. Liu, Y. Liu and P. Yu, Complex isochronous centers and linearization transformations for cubic Z2-equivariant planar systems, J.Diff. Eqs., 2020, 268(7), 3819-3847. ·Zbl 1511.34041
[25]F. Li, Y. Jin and Y. Tian, Integrability and linearizability of cubic Z2 systems with non-resonant singular points, J. Diff. Eqs., 2020, 269(10), 9026-9049. ·Zbl 1450.37052
[26]F. Li and P. Yu, A note on the paper “Center and isochronous center conditions for switching systems associated with elementary singular points”, Commun. Nonlin. Sci. Numer. Simul., 2020, 90, 105405. ·Zbl 1454.34051
[27]V. G. Romanovski, M. Mencinger and B. Fercec, Investigation of center manifolds of three-dimensional systems using computer algebra, Program. Comput. Softw., 2013, 39, 67-73. ·Zbl 1323.68623
[28]V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Compu-tational Algebra Approach, Birkhauser Boston, Inc. Boston, MA., 2009. ·Zbl 1192.34003
[29]L. Sheng and M. Han, Bifurcation of limit cycle from a compound loop with five saddles, J. Appl. Anal. Comput., 2019, 9(6), 2482-2495. ·Zbl 1459.34085
[30]Y. Wu and C. Zhang, Bifurcation of limit cycles and pseudo-isochronous center at degenerate singular point in a septic system, Appl. Math. Comput., 2012, 218(17), 8513-8525. ·Zbl 1255.34032
[31]P. Yu and M. Han, Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation, Appl. Math. Lett., 2015, 44, 17-20. ·Zbl 1336.34051
[32]P. Yu and Y. Tian, Twelve limit cycles around a singular point in a planar cubic-degree polynomial system, Commun. Nonlin. Sci. Numer. Simul., 2014, 19(8), 2690-2705. ·Zbl 1510.37083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp