[1] | Bachiller, D.; Cedó, F.; Jespers, E.; Okniński, J., Iterated matched products of finite braces and simplicity, new solutions of the Yang-Baxter equation, Transl. Am. Math. Soc., 370, 7, 4881-4907, 2018 ·Zbl 1431.16035 |
[2] | Bachiller, D.; Cedó, F.; Jespers, E.; Okniński, J., Asymmetric product of left braces and simplicity, new solutions of the Yang-Baxter equation, Commun. Contemp. Math., 21, 8, Article 1850042 pp., 2019 ·Zbl 1451.16029 |
[3] | Ballester-Bolinches, A.; Esteban-Romero, R., Triply factorised groups and the structure of skew left braces, Commun. Math. Stat., 10, 353-370, 2022 ·Zbl 1490.81094 |
[4] | Ballester-Bolinches, A.; Esteban-Romero, R.; Jiménez-Seral, P., Maximal subgroups of small index of finite almost simple groups, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 116, Article 183 pp., 2022 ·Zbl 1509.20043 |
[5] | Ballester-Bolinches, A.; Esteban-Romero, R.; Pérez-Calabuig, V., A Jordan-Hölder theorem for skew left braces and their applications to multipermutation solutions of the Yang-Baxter equation, Proc. R. Soc. Edinb. A, 154, 3, 793-809, 2024 ·Zbl 1547.17034 |
[6] | Ballester-Bolinches, A.; Ezquerro, L. M., Classes of Finite Groups, Mathematics and Its Applications., vol. 584, 2006, Springer: Springer Dordrecht ·Zbl 1102.20016 |
[7] | Bonatto, M.; Jedlička, P., Central nilpotency of skew braces, J. Algebra Appl., 22, 12, Article 2350255 pp., 2023 ·Zbl 1533.16061 |
[8] | Bourn, D.; Facchini, A.; Pompili, M., Aspects of the category SKB of skew braces, Commun. Algebra, 51, 5, 2129-2143, 2023 ·Zbl 1521.16020 |
[9] | Byott, N. P., Hopf-Galois structures on field extensions with simple Galois groups, Bull. Lond. Math. Soc., 36, 1, 23-29, 2004 ·Zbl 1038.12002 |
[10] | Castelli, M.; Catino, F.; Pinto, G., Indecomposable involutive set-theoretic solutions of the Yang-Baxter equation, J. Pure Appl. Algebra, 223, 10, 4477-4493, 2019 ·Zbl 1412.16023 |
[11] | Catino, F.; Colazzo, I.; Stefanelli, P., Skew left braces with non-trivial annihilator, J. Algebra Appl., 18, 2, Article 1950033 pp., 2019 ·Zbl 1447.16035 |
[12] | Cedó, F.; Jespers, E.; Kubat, Ł.; Van Antwerpen, A.; Verwimp, C., On various types of nilpotency of the structure monoid and group of a set-theoretic solution of the Yang-Baxter equation, J. Pure Appl. Algebra, 227, 2, Article 107194 pp., 2023 ·Zbl 1510.16031 |
[13] | Cedó, F.; Jespers, E.; Okniński, J., An abundance of simple left braces with abelian multiplicative Sylow subgroups, Rev. Mat. Iberoam., 36, 5, 1309-1332, 2020 ·Zbl 1466.16035 |
[14] | Cedó, F.; Okniński, J., Constructing finite simple solutions of the Yang-Baxter equation, Adv. Math., 391, Article 107968 pp., 2021, 39 pp. ·Zbl 1485.16032 |
[15] | Cedó, F.; Smoktunowicz, A.; Vendramin, L., Skew left braces of nilpotent type, Proc. Lond. Math. Soc., 118, 6, 1367-1392, 2019 ·Zbl 1432.16031 |
[16] | Etingof, P.; Schedler, T.; Soloviev, A., Set theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J., 100, 169-209, 1999 ·Zbl 0969.81030 |
[17] | GAP - groups, algorithms, and programming, version 4.13.1, 2024 |
[18] | Gateva-Ivanova, T.; Cameron, P., Multipermutation solutions of the Yang-Baxter equation, Commun. Math. Phys., 309, 3, 583-621, 2012 ·Zbl 1247.81211 |
[19] | Gorenstein, D., Finite Simple Groups, an Introduction to Their Classification, 1982, Plenum Publishing Corp.: Plenum Publishing Corp. New York, London ·Zbl 0483.20008 |
[20] | Guarnieri, L.; Vendramin, L., Skew-braces and the Yang-Baxter equation, Math. Compet., 86, 307, 2519-2534, 2017 ·Zbl 1371.16037 |
[21] | Jespers, E.; Kubat, Ł.; Van Antwerpen, A.; Vendramin, L., Radical and weight of skew braces and their applications to structure groups of solutions of the Yang-Baxter equation, Adv. Math., 385, Article 107767 pp., 2021 ·Zbl 1473.16028 |
[22] | Jespers, E.; Van Antwerpen, A.; Vendramin, L., Nilpotency of skew braces and multipermutation solutions of the Yang-Baxter equation, Commun. Contemp. Math., 25, 09, Article 2250064 pp., 2023 ·Zbl 1533.16063 |
[23] | Konovalov, A.; Smoktunowicz, A.; Vendramin, L., Erratum to the paper “On skew braces and their ideals”, Exp. Math., 30, 1, 346, 2021 ·Zbl 1483.16037 |
[24] | Konovalov, A.; Smoktunowicz, A.; Vendramin, L., On skew braces and their ideals, Exp. Math., 30, 1, 95-104, 2021, Erratum in [23] ·Zbl 1476.16036 |
[25] | Rump, W., Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra, 307, 153-170, 2007 ·Zbl 1115.16022 |
[26] | Vendramin, L., Extensions of set-theoretic solutions of the Yang-Baxter equation and a conjecture of Gateva-Ivanova, J. Pure Appl. Algebra, 220, 2064-2076, 2016 ·Zbl 1337.16028 |
[27] | Vendramin, L.; Konovalov, O., YangBaxter: combinatorial solutions for the Yang-Baxter equation, February 2023, version 0.10.3 |
[28] | Weir, A. J., Sylow p-subgroups of the classical groups over finite fields with characteristic prime to p, Proc. Am. Math. Soc., 6, 4, 529-533, 1955 ·Zbl 0065.01203 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.