[1] | ABBOT, T. G. (2008). Generalizations of Kempe’s Universality Theorem. Master’s thesis, Massachusetts Institute of Technology Cambridge, MA. |
[2] | ALFAKIH, A. Y. (2011). On bar frameworks, stress matrices and semidefinite programming. Math. Program. 129 113-128. Digital Object Identifier: 10.1007/s10107-010-0389-z Google Scholar: Lookup Link MathSciNet: MR2831405 ·Zbl 1225.90095 ·doi:10.1007/s10107-010-0389-z |
[3] | AMÉNDOLA, C., KOHN, K., REICHENBACH, P. and SEIGAL, A. (2021). Invariant theory and scaling algorithms for maximum likelihood estimation. SIAM J. Appl. Algebra Geom. 5 304-337. Digital Object Identifier: 10.1137/20M1328932 Google Scholar: Lookup Link MathSciNet: MR4274830 ·Zbl 1518.14065 ·doi:10.1137/20M1328932 |
[4] | ASIMOW, L. and ROTH, B. (1978). The rigidity of graphs. Trans. Amer. Math. Soc. 245 279-289. Digital Object Identifier: 10.2307/1998867 Google Scholar: Lookup Link MathSciNet: MR0511410 ·Zbl 0392.05026 ·doi:10.2307/1998867 |
[5] | BEN-DAVID, E. (2015). Sharp lower and upper bounds for the Gaussian rank of a graph. J. Multivariate Anal. 139 207-218. Digital Object Identifier: 10.1016/j.jmva.2015.03.004 Google Scholar: Lookup Link MathSciNet: MR3349487 ·Zbl 1328.62326 ·doi:10.1016/j.jmva.2015.03.004 |
[6] | BERG, A. R. and JORDÁN, T. (2003). A proof of Connelly’s conjecture on 3-connected circuits of the rigidity matroid. J. Combin. Theory Ser. B 88 77-97. Digital Object Identifier: 10.1016/S0095-8956(02)00037-0 Google Scholar: Lookup Link MathSciNet: MR1973261 ·Zbl 1036.05047 ·doi:10.1016/S0095-8956(02)00037-0 |
[7] | BERNSTEIN, D. I., BLEKHERMAN, G. and SINN, R. (2020). Typical and generic ranks in matrix completion. Linear Algebra Appl. 585 71-104. Digital Object Identifier: 10.1016/j.laa.2019.09.001 Google Scholar: Lookup Link MathSciNet: MR4016092 ·Zbl 1425.15024 ·doi:10.1016/j.laa.2019.09.001 |
[8] | BLEKHERMAN, G. and SINN, R. (2019). Maximum likelihood threshold and generic completion rank of graphs. Discrete Comput. Geom. 61 303-324. Digital Object Identifier: 10.1007/s00454-018-9990-3 Google Scholar: Lookup Link MathSciNet: MR3903791 ·Zbl 1405.14132 ·doi:10.1007/s00454-018-9990-3 |
[9] | BOCHNAK, J., COSTE, M. and ROY, M.-F. (1998). Real Algebraic Geometry. Ergebnisse der Mathematik und Ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 36. Springer, Berlin. Digital Object Identifier: 10.1007/978-3-662-03718-8 Google Scholar: Lookup Link MathSciNet: MR1659509 ·Zbl 0912.14023 ·doi:10.1007/978-3-662-03718-8 |
[10] | BOLKER, E. D. and ROTH, B. (1980). When is a bipartite graph a rigid framework? Pacific J. Math. 90 27-44. MathSciNet: MR0599317 ·Zbl 0407.05078 |
[11] | BRIGHTWELL, G. (1993). On the complexity of diagram testing.Order 10 297-303. Digital Object Identifier: 10.1007/BF01108825 Google Scholar: Lookup Link MathSciNet: MR1269267 ·Zbl 0808.06003 ·doi:10.1007/BF01108825 |
[12] | BUHL, S. L. (1993). On the existence of maximum likelihood estimators for graphical Gaussian models. Scand. J. Stat. 20 263-270. MathSciNet: MR1241392 ·Zbl 0778.62046 |
[13] | Candès, E. J. and Tao, T. (2010). The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inf. Theory 56 2053-2080. Digital Object Identifier: 10.1109/TIT.2010.2044061 Google Scholar: Lookup Link MathSciNet: MR2723472 ·Zbl 1366.15021 ·doi:10.1109/TIT.2010.2044061 |
[14] | CONNELLY, R. (1982). Rigidity and energy. Invent. Math. 66 11-33. Digital Object Identifier: 10.1007/BF01404753 Google Scholar: Lookup Link MathSciNet: MR0652643 ·Zbl 0485.52001 ·doi:10.1007/BF01404753 |
[15] | CONNELLY, R. (2005). Generic global rigidity. Discrete Comput. Geom. 33 549-563. Digital Object Identifier: 10.1007/s00454-004-1124-4 Google Scholar: Lookup Link MathSciNet: MR2132290 ·Zbl 1072.52016 ·doi:10.1007/s00454-004-1124-4 |
[16] | CONNELLY, R.and GORTLER, S. J. (2017). Universal rigidity of complete bipartite graphs. Discrete Comput. Geom. 57 281-304. Digital Object Identifier: 10.1007/s00454-016-9836-9 Google Scholar: Lookup Link MathSciNet: MR3602854 ·Zbl 1358.05073 ·doi:10.1007/s00454-016-9836-9 |
[17] | CONNELLY, R. and GORTLER, S. J. (2017). Universal rigidity of complete bipartite graphs. Discrete Comput. Geom. 57 281-304. Digital Object Identifier: 10.1007/s00454-016-9836-9 Google Scholar: Lookup Link MathSciNet: MR3602854 ·Zbl 1358.05073 ·doi:10.1007/s00454-016-9836-9 |
[18] | CONNELLY, R., GORTLER, S. J. and THERAN, L. (2018). Affine rigidity and conics at infinity. Int. Math. Res. Not. IMRN 13 4084-4102. Digital Object Identifier: 10.1093/imrn/rnx014 Google Scholar: Lookup Link MathSciNet: MR3829178 ·Zbl 1409.52019 ·doi:10.1093/imrn/rnx014 |
[19] | CONNELLY, R., GORTLER, S. J. and THERAN, L. (2020). Generically globally rigid graphs have generic universally rigid frameworks.Combinatorica 40 1-37. Digital Object Identifier: 10.1007/s00493-018-3694-4 Google Scholar: Lookup Link MathSciNet: MR4078810 ·Zbl 1463.52016 ·doi:10.1007/s00493-018-3694-4 |
[20] | CONNELLY, R. and WHITELEY, W. J. (2010). Global rigidity: The effect of coning. Discrete Comput. Geom. 43 717-735. Digital Object Identifier: 10.1007/s00454-009-9220-0 Google Scholar: Lookup Link MathSciNet: MR2610468 ·Zbl 1190.52018 ·doi:10.1007/s00454-009-9220-0 |
[21] | DE GREY, A. D. N. J. (2018). The chromatic number of the plane is at least 5.Geombinatorics 28 18-31. MathSciNet: MR3820926 ·Zbl 1404.05063 |
[22] | DEMPSTER, A. P. (1972). Covariance selection.Biometrics 28 157-175. MathSciNet: MR3931974 |
[23] | DOBRA, A., HANS, C., JONES, B., NEVINS, J. R., YAO, G. and WEST, M. (2004). Sparse graphical models for exploring gene expression data. J. Multivariate Anal. 90 196-212. Digital Object Identifier: 10.1016/j.jmva.2004.02.009 Google Scholar: Lookup Link MathSciNet: MR2064941 ·Zbl 1047.62104 ·doi:10.1016/j.jmva.2004.02.009 |
[24] | Drton, M., Fox, C., Käufl, A. and Pouliot, G. (2019). The maximum likelihood threshold of a path diagram. Ann. Statist. 47 1536-1553. Digital Object Identifier: 10.1214/18-AOS1724 Google Scholar: Lookup Link MathSciNet: MR3911121 ·Zbl 1418.62231 ·doi:10.1214/18-AOS1724 |
[25] | ERDŐS, P., HARARY, F. and TUTTE, W. T. (1965). On the dimension of a graph.Mathematika 12 118-122. Digital Object Identifier: 10.1112/S0025579300005222 Google Scholar: Lookup Link MathSciNet: MR0188096 ·Zbl 0151.33204 ·doi:10.1112/S0025579300005222 |
[26] | GLUCK, H. (1975). Almost all simply connected closed surfaces are rigid. In Geometric Topology (Proc. Conf., Park City, Utah, 1974). Lecture Notes in Math.,Vol. 438 225-239. Springer, Berlin. MathSciNet: MR0400239 ·Zbl 0315.50002 |
[27] | GORTLER, S. J., HEALY, A. D. and THURSTON, D. P. (2010). Characterizing generic global rigidity. Amer. J. Math. 132 897-939. Digital Object Identifier: 10.1353/ajm.0.0132 Google Scholar: Lookup Link MathSciNet: MR2663644 ·Zbl 1202.52020 ·doi:10.1353/ajm.0.0132 |
[28] | GORTLER, S. J. and THURSTON, D. P. (2014). Characterizing the universal rigidity of generic frameworks. Discrete Comput. Geom. 51 1017-1036. Digital Object Identifier: 10.1007/s00454-014-9590-9 Google Scholar: Lookup Link MathSciNet: MR3216675 ·Zbl 1298.05303 ·doi:10.1007/s00454-014-9590-9 |
[29] | GORTLER, S. J. and THURSTON, D. P. (2014). Generic global rigidity in complex and pseudo-Euclidean spaces. In Rigidity and Symmetry. Fields Inst. Commun. 70 131-154. Springer, New York. Digital Object Identifier: 10.1007/978-1-4939-0781-6_8 Google Scholar: Lookup Link MathSciNet: MR3329273 ·Zbl 1320.52022 ·doi:10.1007/978-1-4939-0781-6_8 |
[30] | Gross, E. and Sullivant, S. (2018). The maximum likelihood threshold of a graph.Bernoulli 24 386-407. Digital Object Identifier: 10.3150/16-BEJ881 Google Scholar: Lookup Link MathSciNet: MR3706762 ·Zbl 1426.62167 ·doi:10.3150/16-BEJ881 |
[31] | Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer Series in Statistics. Springer, New York. Digital Object Identifier: 10.1007/978-0-387-84858-7 Google Scholar: Lookup Link MathSciNet: MR2722294 ·Zbl 1273.62005 ·doi:10.1007/978-0-387-84858-7 |
[32] | HENDRICKSON, B. (1992). Conditions for unique graph realizations. SIAM J. Comput. 21 65-84. Digital Object Identifier: 10.1137/0221008 Google Scholar: Lookup Link MathSciNet: MR1148818 ·Zbl 0756.05047 ·doi:10.1137/0221008 |
[33] | JACKSON, B. and JORDÁN, T. (2005). The \(d\)-dimensional rigidity matroid of sparse graphs. J. Combin. Theory Ser. B 95 118-133. Digital Object Identifier: 10.1016/j.jctb.2005.03.004 Google Scholar: Lookup Link MathSciNet: MR2156343 ·Zbl 1070.05022 ·doi:10.1016/j.jctb.2005.03.004 |
[34] | JORDÁN, T. (2017). Extremal problems and results in combinatorial rigidity. In Proc. of the 10th Japanese Hungarian Symposium on Discrete Mathematics and Its Applications 297-304. |
[35] | KAPOVICH, M. and MILLSON, J. J. (1997). Hodge theory and the art of paper folding. Publ. Res. Inst. Math. Sci. 33 1-31. Digital Object Identifier: 10.2977/prims/1195145531 Google Scholar: Lookup Link MathSciNet: MR1442490 ·Zbl 0961.32026 ·doi:10.2977/prims/1195145531 |
[36] | KASIVISWANATHAN, S. P., MOORE, C. and THERAN, L. (2011). The rigidity transition in random graphs. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms 1237-1252. SIAM, Philadelphia, PA. MathSciNet: MR2858396 ·Zbl 1376.05140 |
[37] | KIRÁLY, F. J. and THERAN, L. (2013). Coherence and sufficient sampling densities for reconstruction in compressed sensing. Preprint. Available at arXiv:1302.2767. |
[38] | KIRÁLY, F. J., THERAN, L. and TOMIOKA, R. (2015). The algebraic combinatorial approach for low-rank matrix completion. J. Mach. Learn. Res. 16 1391-1436. MathSciNet: MR3417786 ·Zbl 1354.15019 |
[39] | KLOKS, T. (1994).Treewidth: Computations and Approximations. Lecture Notes in Computer Science 842. Springer, Berlin. Digital Object Identifier: 10.1007/BFb0045375 Google Scholar: Lookup Link MathSciNet: MR1312164 ·Zbl 0825.68144 ·doi:10.1007/BFb0045375 |
[40] | KRUMSIEK, J., SUHRE, K., ILLIG, T., ADAMSKI, J. and THEIS, F. J. (2011). Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Syst. Biol. 5 1-16. |
[41] | LAMAN, G. (1970). On graphs and rigidity of plane skeletal structures. J. Engrg. Math. 4 331-340. Digital Object Identifier: 10.1007/BF01534980 Google Scholar: Lookup Link MathSciNet: MR0269535 ·Zbl 0213.51903 ·doi:10.1007/BF01534980 |
[42] | LEE, A. and STREINU, I. (2008). Pebble game algorithms and sparse graphs. Discrete Math. 308 1425-1437. Digital Object Identifier: 10.1016/j.disc.2007.07.104 Google Scholar: Lookup Link MathSciNet: MR2392060 ·Zbl 1136.05062 ·doi:10.1016/j.disc.2007.07.104 |
[43] | LEW, A., NEVO, E., PELED, Y. and RAZ, O. E. (2023). Sharp threshold for rigidity of random graphs. Bull. Lond. Math. Soc. 55 490-501. Digital Object Identifier: 10.1112/blms.12740 Google Scholar: Lookup Link MathSciNet: MR4568355 ·Zbl 1519.05221 ·doi:10.1112/blms.12740 |
[44] | LINIAL, N., LOVÁSZ, L. and WIGDERSON, A. (1988). Rubber bands, convex embeddings and graph connectivity.Combinatorica 8 91-102. Digital Object Identifier: 10.1007/BF02122557 Google Scholar: Lookup Link MathSciNet: MR0951998 ·Zbl 0674.05046 ·doi:10.1007/BF02122557 |
[45] | MAKAM, V., REICHENBACH, P. and SEIGAL, A. (2023). Symmetries in directed Gaussian graphical models. Electron. J. Stat. 17 3969-4010. Digital Object Identifier: 10.1214/23-ejs2192 Google Scholar: Lookup Link MathSciNet: MR4677191 ·Zbl 07784512 ·doi:10.1214/23-ejs2192 |
[46] | MAXWELL, J. C. (1864). On the calculation of the equilibrium and stiffness of frames. Lond. Edinb. Dublin Philos. Mag. J. Sci. 27 294-299. |
[47] | NEVO, E. (2007). On embeddability and stresses of graphs.Combinatorica 27 465-472. Digital Object Identifier: 10.1007/s00493-007-2168-x Google Scholar: Lookup Link MathSciNet: MR2359827 ·Zbl 1157.05331 ·doi:10.1007/s00493-007-2168-x |
[48] | NIXON, A. and WHITELEY, W. (2019). Change of metrics in rigidity theory. In Handbook of Geometric Constraint Systems Principles. Discrete Math. Appl. (Boca Raton) 351-374. CRC Press, Boca Raton, FL. MathSciNet: MR3837062 ·Zbl 1421.52024 |
[49] | OPGEN-RHEIN, R. and STRIMMER, K. (2007). From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol. 1 1-10. |
[50] | Pittel, B., Spencer, J. and Wormald, N. (1996). Sudden emergence of a giant \(k\)-core in a random graph. J. Combin. Theory Ser. B 67 111-151. Digital Object Identifier: 10.1006/jctb.1996.0036 Google Scholar: Lookup Link MathSciNet: MR1385386 ·Zbl 0860.05065 ·doi:10.1006/jctb.1996.0036 |
[51] | POLLACZEK-GEIRINGER, H. (1927). Über die Gliederung ebener Fachwerke. ZAMM Z. Angew. Math. Mech. 7 58-72. ·JFM 53.0743.02 |
[52] | ROSEN, Z., SIDMAN, J. and THERAN, L. (2020). Algebraic matroids in action. Amer. Math. Monthly 127 199-216. Digital Object Identifier: 10.1080/00029890.2020.1689781 Google Scholar: Lookup Link MathSciNet: MR4067892 ·Zbl 1433.05067 ·doi:10.1080/00029890.2020.1689781 |
[53] | SALIOLA, F. V. and WHITELEY, W. (2007). Some notes on the equivalence of first-order rigidity in various geometries. Preprint. Available at arXiv:0709.3354. |
[54] | SCHÄFER, J. and STRIMMER, K. (2005). An empirical Bayes approach to inferring large-scale gene association networks.Bioinformatics 21 754-764. Digital Object Identifier: 10.1093/bioinformatics/bti062 Google Scholar: Lookup Link ·doi:10.1093/bioinformatics/bti062 |
[55] | SCHÄFER, J. and STRIMMER, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4 Art. 32. Digital Object Identifier: 10.2202/1544-6115.1175 Google Scholar: Lookup Link MathSciNet: MR2183942 ·doi:10.2202/1544-6115.1175 |
[56] | SIMON, B. (2011).Convexity: An Analytic Viewpoint. Cambridge Tracts in Mathematics 187. Cambridge Univ. Press, Cambridge. Digital Object Identifier: 10.1017/CBO9780511910135 Google Scholar: Lookup Link MathSciNet: MR2814377 ·Zbl 1229.26003 ·doi:10.1017/CBO9780511910135 |
[57] | SINGER, A. and CUCURINGU, M. (2009/10). Uniqueness of low-rank matrix completion by rigidity theory. SIAM J. Matrix Anal. Appl. 31 1621-1641. Digital Object Identifier: 10.1137/090750688 Google Scholar: Lookup Link MathSciNet: MR2595541 ·Zbl 1221.15038 ·doi:10.1137/090750688 |
[58] | STASICA, J. (2003). Smooth points of a semialgebraic set. Ann. Polon. Math. 82 149-153. Digital Object Identifier: 10.4064/ap82-2-5 Google Scholar: Lookup Link MathSciNet: MR2041841 ·Zbl 1056.14080 ·doi:10.4064/ap82-2-5 |
[59] | TUTTE, W. T. (1963). How to draw a graph. Proc. Lond. Math. Soc. (3) 13 743-767. Digital Object Identifier: 10.1112/plms/s3-13.1.743 Google Scholar: Lookup Link MathSciNet: MR0158387 zbMATH: 0115.40805 ·Zbl 0115.40805 ·doi:10.1112/plms/s3-13.1.743 |
[60] | UHLER, C. (2012). Geometry of maximum likelihood estimation in Gaussian graphical models. Ann. Statist. 40 238-261. Digital Object Identifier: 10.1214/11-AOS957 Google Scholar: Lookup Link MathSciNet: MR3014306 ·Zbl 1246.62140 ·doi:10.1214/11-AOS957 |
[61] | VANDENBERGHE, L., BOYD, S. and WU, S.-P. (1998). Determinant maximization with linear matrix inequality constraints. SIAM J. Matrix Anal. Appl. 19 499-533. Digital Object Identifier: 10.1137/S0895479896303430 Google Scholar: Lookup Link MathSciNet: MR1614078 ·Zbl 0959.90039 ·doi:10.1137/S0895479896303430 |
[62] | WHITELEY, W. (1983). Cones, infinity and 1-story buildings. Struct. Topol. 8 53-70. MathSciNet: MR0721956 ·Zbl 0545.51017 |
[63] | WORMALD, N. C. (1999). Models of random regular graphs. In Surveys in Combinatorics, 1999 (Canterbury). London Mathematical Society Lecture Note Series 267 239-298. Cambridge Univ. Press, Cambridge. MathSciNet: MR1725006 ·Zbl 0935.05080 |
[64] | WU, X., YE, Y. and SUBRAMANIAN, K. R. (2003). Interactive analysis of gene interactions using graphical Gaussian model. In Proceedings of the 3rd International Conference on Data Mining in Bioinformatics 63-69. |