Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Maximum likelihood thresholds via graph rigidity.(English)Zbl 07900410

Summary: The maximum likelihood threshold (MLT) of a graph \(G\) is the minimum number of samples to almost surely guarantee existence of the maximum likelihood estimate in the corresponding Gaussian graphical model. We give a new characterization of the MLT in terms of rigidity-theoretic properties of \(G\) and use this characterization to give new combinatorial lower bounds on the MLT of any graph.
We use the new lower bounds to give high-probability guarantees on the maximum likelihood thresholds of sparse Erdős-Rényi random graphs in terms of their average density. These examples show that the new lower bounds are within a polylog factor of tight, where, on the same graph families, all known lower bounds are trivial.
Based on computational experiments made possible by our methods, we conjecture that the MLT of an Erdős-Rényi random graph is equal to its generic completion rank with high probability. Using structural results on rigid graphs in low dimension, we can prove the conjecture for graphs with MLT at most 4 and describe the threshold probability for the MLT to switch from 3 to 4.
We also give a geometric characterization of the MLT of a graph in terms of a new “lifting” problem for frameworks that is interesting in its own right. The lifting perspective yields a new connection between the weak MLT (where the maximum likelihood estimate exists only with positive probability) and the classical Hadwiger-Nelson problem.

MSC:

62H12 Estimation in multivariate analysis
52C25 Rigidity and flexibility of structures (aspects of discrete geometry)
90C25 Convex programming

Cite

References:

[1]ABBOT, T. G. (2008). Generalizations of Kempe’s Universality Theorem. Master’s thesis, Massachusetts Institute of Technology Cambridge, MA.
[2]ALFAKIH, A. Y. (2011). On bar frameworks, stress matrices and semidefinite programming. Math. Program. 129 113-128. Digital Object Identifier: 10.1007/s10107-010-0389-z Google Scholar: Lookup Link MathSciNet: MR2831405 ·Zbl 1225.90095 ·doi:10.1007/s10107-010-0389-z
[3]AMÉNDOLA, C., KOHN, K., REICHENBACH, P. and SEIGAL, A. (2021). Invariant theory and scaling algorithms for maximum likelihood estimation. SIAM J. Appl. Algebra Geom. 5 304-337. Digital Object Identifier: 10.1137/20M1328932 Google Scholar: Lookup Link MathSciNet: MR4274830 ·Zbl 1518.14065 ·doi:10.1137/20M1328932
[4]ASIMOW, L. and ROTH, B. (1978). The rigidity of graphs. Trans. Amer. Math. Soc. 245 279-289. Digital Object Identifier: 10.2307/1998867 Google Scholar: Lookup Link MathSciNet: MR0511410 ·Zbl 0392.05026 ·doi:10.2307/1998867
[5]BEN-DAVID, E. (2015). Sharp lower and upper bounds for the Gaussian rank of a graph. J. Multivariate Anal. 139 207-218. Digital Object Identifier: 10.1016/j.jmva.2015.03.004 Google Scholar: Lookup Link MathSciNet: MR3349487 ·Zbl 1328.62326 ·doi:10.1016/j.jmva.2015.03.004
[6]BERG, A. R. and JORDÁN, T. (2003). A proof of Connelly’s conjecture on 3-connected circuits of the rigidity matroid. J. Combin. Theory Ser. B 88 77-97. Digital Object Identifier: 10.1016/S0095-8956(02)00037-0 Google Scholar: Lookup Link MathSciNet: MR1973261 ·Zbl 1036.05047 ·doi:10.1016/S0095-8956(02)00037-0
[7]BERNSTEIN, D. I., BLEKHERMAN, G. and SINN, R. (2020). Typical and generic ranks in matrix completion. Linear Algebra Appl. 585 71-104. Digital Object Identifier: 10.1016/j.laa.2019.09.001 Google Scholar: Lookup Link MathSciNet: MR4016092 ·Zbl 1425.15024 ·doi:10.1016/j.laa.2019.09.001
[8]BLEKHERMAN, G. and SINN, R. (2019). Maximum likelihood threshold and generic completion rank of graphs. Discrete Comput. Geom. 61 303-324. Digital Object Identifier: 10.1007/s00454-018-9990-3 Google Scholar: Lookup Link MathSciNet: MR3903791 ·Zbl 1405.14132 ·doi:10.1007/s00454-018-9990-3
[9]BOCHNAK, J., COSTE, M. and ROY, M.-F. (1998). Real Algebraic Geometry. Ergebnisse der Mathematik und Ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 36. Springer, Berlin. Digital Object Identifier: 10.1007/978-3-662-03718-8 Google Scholar: Lookup Link MathSciNet: MR1659509 ·Zbl 0912.14023 ·doi:10.1007/978-3-662-03718-8
[10]BOLKER, E. D. and ROTH, B. (1980). When is a bipartite graph a rigid framework? Pacific J. Math. 90 27-44. MathSciNet: MR0599317 ·Zbl 0407.05078
[11]BRIGHTWELL, G. (1993). On the complexity of diagram testing.Order 10 297-303. Digital Object Identifier: 10.1007/BF01108825 Google Scholar: Lookup Link MathSciNet: MR1269267 ·Zbl 0808.06003 ·doi:10.1007/BF01108825
[12]BUHL, S. L. (1993). On the existence of maximum likelihood estimators for graphical Gaussian models. Scand. J. Stat. 20 263-270. MathSciNet: MR1241392 ·Zbl 0778.62046
[13]Candès, E. J. and Tao, T. (2010). The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inf. Theory 56 2053-2080. Digital Object Identifier: 10.1109/TIT.2010.2044061 Google Scholar: Lookup Link MathSciNet: MR2723472 ·Zbl 1366.15021 ·doi:10.1109/TIT.2010.2044061
[14]CONNELLY, R. (1982). Rigidity and energy. Invent. Math. 66 11-33. Digital Object Identifier: 10.1007/BF01404753 Google Scholar: Lookup Link MathSciNet: MR0652643 ·Zbl 0485.52001 ·doi:10.1007/BF01404753
[15]CONNELLY, R. (2005). Generic global rigidity. Discrete Comput. Geom. 33 549-563. Digital Object Identifier: 10.1007/s00454-004-1124-4 Google Scholar: Lookup Link MathSciNet: MR2132290 ·Zbl 1072.52016 ·doi:10.1007/s00454-004-1124-4
[16]CONNELLY, R.and GORTLER, S. J. (2017). Universal rigidity of complete bipartite graphs. Discrete Comput. Geom. 57 281-304. Digital Object Identifier: 10.1007/s00454-016-9836-9 Google Scholar: Lookup Link MathSciNet: MR3602854 ·Zbl 1358.05073 ·doi:10.1007/s00454-016-9836-9
[17]CONNELLY, R. and GORTLER, S. J. (2017). Universal rigidity of complete bipartite graphs. Discrete Comput. Geom. 57 281-304. Digital Object Identifier: 10.1007/s00454-016-9836-9 Google Scholar: Lookup Link MathSciNet: MR3602854 ·Zbl 1358.05073 ·doi:10.1007/s00454-016-9836-9
[18]CONNELLY, R., GORTLER, S. J. and THERAN, L. (2018). Affine rigidity and conics at infinity. Int. Math. Res. Not. IMRN 13 4084-4102. Digital Object Identifier: 10.1093/imrn/rnx014 Google Scholar: Lookup Link MathSciNet: MR3829178 ·Zbl 1409.52019 ·doi:10.1093/imrn/rnx014
[19]CONNELLY, R., GORTLER, S. J. and THERAN, L. (2020). Generically globally rigid graphs have generic universally rigid frameworks.Combinatorica 40 1-37. Digital Object Identifier: 10.1007/s00493-018-3694-4 Google Scholar: Lookup Link MathSciNet: MR4078810 ·Zbl 1463.52016 ·doi:10.1007/s00493-018-3694-4
[20]CONNELLY, R. and WHITELEY, W. J. (2010). Global rigidity: The effect of coning. Discrete Comput. Geom. 43 717-735. Digital Object Identifier: 10.1007/s00454-009-9220-0 Google Scholar: Lookup Link MathSciNet: MR2610468 ·Zbl 1190.52018 ·doi:10.1007/s00454-009-9220-0
[21]DE GREY, A. D. N. J. (2018). The chromatic number of the plane is at least 5.Geombinatorics 28 18-31. MathSciNet: MR3820926 ·Zbl 1404.05063
[22]DEMPSTER, A. P. (1972). Covariance selection.Biometrics 28 157-175. MathSciNet: MR3931974
[23]DOBRA, A., HANS, C., JONES, B., NEVINS, J. R., YAO, G. and WEST, M. (2004). Sparse graphical models for exploring gene expression data. J. Multivariate Anal. 90 196-212. Digital Object Identifier: 10.1016/j.jmva.2004.02.009 Google Scholar: Lookup Link MathSciNet: MR2064941 ·Zbl 1047.62104 ·doi:10.1016/j.jmva.2004.02.009
[24]Drton, M., Fox, C., Käufl, A. and Pouliot, G. (2019). The maximum likelihood threshold of a path diagram. Ann. Statist. 47 1536-1553. Digital Object Identifier: 10.1214/18-AOS1724 Google Scholar: Lookup Link MathSciNet: MR3911121 ·Zbl 1418.62231 ·doi:10.1214/18-AOS1724
[25]ERDŐS, P., HARARY, F. and TUTTE, W. T. (1965). On the dimension of a graph.Mathematika 12 118-122. Digital Object Identifier: 10.1112/S0025579300005222 Google Scholar: Lookup Link MathSciNet: MR0188096 ·Zbl 0151.33204 ·doi:10.1112/S0025579300005222
[26]GLUCK, H. (1975). Almost all simply connected closed surfaces are rigid. In Geometric Topology (Proc. Conf., Park City, Utah, 1974). Lecture Notes in Math.,Vol. 438 225-239. Springer, Berlin. MathSciNet: MR0400239 ·Zbl 0315.50002
[27]GORTLER, S. J., HEALY, A. D. and THURSTON, D. P. (2010). Characterizing generic global rigidity. Amer. J. Math. 132 897-939. Digital Object Identifier: 10.1353/ajm.0.0132 Google Scholar: Lookup Link MathSciNet: MR2663644 ·Zbl 1202.52020 ·doi:10.1353/ajm.0.0132
[28]GORTLER, S. J. and THURSTON, D. P. (2014). Characterizing the universal rigidity of generic frameworks. Discrete Comput. Geom. 51 1017-1036. Digital Object Identifier: 10.1007/s00454-014-9590-9 Google Scholar: Lookup Link MathSciNet: MR3216675 ·Zbl 1298.05303 ·doi:10.1007/s00454-014-9590-9
[29]GORTLER, S. J. and THURSTON, D. P. (2014). Generic global rigidity in complex and pseudo-Euclidean spaces. In Rigidity and Symmetry. Fields Inst. Commun. 70 131-154. Springer, New York. Digital Object Identifier: 10.1007/978-1-4939-0781-6_8 Google Scholar: Lookup Link MathSciNet: MR3329273 ·Zbl 1320.52022 ·doi:10.1007/978-1-4939-0781-6_8
[30]Gross, E. and Sullivant, S. (2018). The maximum likelihood threshold of a graph.Bernoulli 24 386-407. Digital Object Identifier: 10.3150/16-BEJ881 Google Scholar: Lookup Link MathSciNet: MR3706762 ·Zbl 1426.62167 ·doi:10.3150/16-BEJ881
[31]Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer Series in Statistics. Springer, New York. Digital Object Identifier: 10.1007/978-0-387-84858-7 Google Scholar: Lookup Link MathSciNet: MR2722294 ·Zbl 1273.62005 ·doi:10.1007/978-0-387-84858-7
[32]HENDRICKSON, B. (1992). Conditions for unique graph realizations. SIAM J. Comput. 21 65-84. Digital Object Identifier: 10.1137/0221008 Google Scholar: Lookup Link MathSciNet: MR1148818 ·Zbl 0756.05047 ·doi:10.1137/0221008
[33]JACKSON, B. and JORDÁN, T. (2005). The \(d\)-dimensional rigidity matroid of sparse graphs. J. Combin. Theory Ser. B 95 118-133. Digital Object Identifier: 10.1016/j.jctb.2005.03.004 Google Scholar: Lookup Link MathSciNet: MR2156343 ·Zbl 1070.05022 ·doi:10.1016/j.jctb.2005.03.004
[34]JORDÁN, T. (2017). Extremal problems and results in combinatorial rigidity. In Proc. of the 10th Japanese Hungarian Symposium on Discrete Mathematics and Its Applications 297-304.
[35]KAPOVICH, M. and MILLSON, J. J. (1997). Hodge theory and the art of paper folding. Publ. Res. Inst. Math. Sci. 33 1-31. Digital Object Identifier: 10.2977/prims/1195145531 Google Scholar: Lookup Link MathSciNet: MR1442490 ·Zbl 0961.32026 ·doi:10.2977/prims/1195145531
[36]KASIVISWANATHAN, S. P., MOORE, C. and THERAN, L. (2011). The rigidity transition in random graphs. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms 1237-1252. SIAM, Philadelphia, PA. MathSciNet: MR2858396 ·Zbl 1376.05140
[37]KIRÁLY, F. J. and THERAN, L. (2013). Coherence and sufficient sampling densities for reconstruction in compressed sensing. Preprint. Available at arXiv:1302.2767.
[38]KIRÁLY, F. J., THERAN, L. and TOMIOKA, R. (2015). The algebraic combinatorial approach for low-rank matrix completion. J. Mach. Learn. Res. 16 1391-1436. MathSciNet: MR3417786 ·Zbl 1354.15019
[39]KLOKS, T. (1994).Treewidth: Computations and Approximations. Lecture Notes in Computer Science 842. Springer, Berlin. Digital Object Identifier: 10.1007/BFb0045375 Google Scholar: Lookup Link MathSciNet: MR1312164 ·Zbl 0825.68144 ·doi:10.1007/BFb0045375
[40]KRUMSIEK, J., SUHRE, K., ILLIG, T., ADAMSKI, J. and THEIS, F. J. (2011). Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Syst. Biol. 5 1-16.
[41]LAMAN, G. (1970). On graphs and rigidity of plane skeletal structures. J. Engrg. Math. 4 331-340. Digital Object Identifier: 10.1007/BF01534980 Google Scholar: Lookup Link MathSciNet: MR0269535 ·Zbl 0213.51903 ·doi:10.1007/BF01534980
[42]LEE, A. and STREINU, I. (2008). Pebble game algorithms and sparse graphs. Discrete Math. 308 1425-1437. Digital Object Identifier: 10.1016/j.disc.2007.07.104 Google Scholar: Lookup Link MathSciNet: MR2392060 ·Zbl 1136.05062 ·doi:10.1016/j.disc.2007.07.104
[43]LEW, A., NEVO, E., PELED, Y. and RAZ, O. E. (2023). Sharp threshold for rigidity of random graphs. Bull. Lond. Math. Soc. 55 490-501. Digital Object Identifier: 10.1112/blms.12740 Google Scholar: Lookup Link MathSciNet: MR4568355 ·Zbl 1519.05221 ·doi:10.1112/blms.12740
[44]LINIAL, N., LOVÁSZ, L. and WIGDERSON, A. (1988). Rubber bands, convex embeddings and graph connectivity.Combinatorica 8 91-102. Digital Object Identifier: 10.1007/BF02122557 Google Scholar: Lookup Link MathSciNet: MR0951998 ·Zbl 0674.05046 ·doi:10.1007/BF02122557
[45]MAKAM, V., REICHENBACH, P. and SEIGAL, A. (2023). Symmetries in directed Gaussian graphical models. Electron. J. Stat. 17 3969-4010. Digital Object Identifier: 10.1214/23-ejs2192 Google Scholar: Lookup Link MathSciNet: MR4677191 ·Zbl 07784512 ·doi:10.1214/23-ejs2192
[46]MAXWELL, J. C. (1864). On the calculation of the equilibrium and stiffness of frames. Lond. Edinb. Dublin Philos. Mag. J. Sci. 27 294-299.
[47]NEVO, E. (2007). On embeddability and stresses of graphs.Combinatorica 27 465-472. Digital Object Identifier: 10.1007/s00493-007-2168-x Google Scholar: Lookup Link MathSciNet: MR2359827 ·Zbl 1157.05331 ·doi:10.1007/s00493-007-2168-x
[48]NIXON, A. and WHITELEY, W. (2019). Change of metrics in rigidity theory. In Handbook of Geometric Constraint Systems Principles. Discrete Math. Appl. (Boca Raton) 351-374. CRC Press, Boca Raton, FL. MathSciNet: MR3837062 ·Zbl 1421.52024
[49]OPGEN-RHEIN, R. and STRIMMER, K. (2007). From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol. 1 1-10.
[50]Pittel, B., Spencer, J. and Wormald, N. (1996). Sudden emergence of a giant \(k\)-core in a random graph. J. Combin. Theory Ser. B 67 111-151. Digital Object Identifier: 10.1006/jctb.1996.0036 Google Scholar: Lookup Link MathSciNet: MR1385386 ·Zbl 0860.05065 ·doi:10.1006/jctb.1996.0036
[51]POLLACZEK-GEIRINGER, H. (1927). Über die Gliederung ebener Fachwerke. ZAMM Z. Angew. Math. Mech. 7 58-72. ·JFM 53.0743.02
[52]ROSEN, Z., SIDMAN, J. and THERAN, L. (2020). Algebraic matroids in action. Amer. Math. Monthly 127 199-216. Digital Object Identifier: 10.1080/00029890.2020.1689781 Google Scholar: Lookup Link MathSciNet: MR4067892 ·Zbl 1433.05067 ·doi:10.1080/00029890.2020.1689781
[53]SALIOLA, F. V. and WHITELEY, W. (2007). Some notes on the equivalence of first-order rigidity in various geometries. Preprint. Available at arXiv:0709.3354.
[54]SCHÄFER, J. and STRIMMER, K. (2005). An empirical Bayes approach to inferring large-scale gene association networks.Bioinformatics 21 754-764. Digital Object Identifier: 10.1093/bioinformatics/bti062 Google Scholar: Lookup Link ·doi:10.1093/bioinformatics/bti062
[55]SCHÄFER, J. and STRIMMER, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4 Art. 32. Digital Object Identifier: 10.2202/1544-6115.1175 Google Scholar: Lookup Link MathSciNet: MR2183942 ·doi:10.2202/1544-6115.1175
[56]SIMON, B. (2011).Convexity: An Analytic Viewpoint. Cambridge Tracts in Mathematics 187. Cambridge Univ. Press, Cambridge. Digital Object Identifier: 10.1017/CBO9780511910135 Google Scholar: Lookup Link MathSciNet: MR2814377 ·Zbl 1229.26003 ·doi:10.1017/CBO9780511910135
[57]SINGER, A. and CUCURINGU, M. (2009/10). Uniqueness of low-rank matrix completion by rigidity theory. SIAM J. Matrix Anal. Appl. 31 1621-1641. Digital Object Identifier: 10.1137/090750688 Google Scholar: Lookup Link MathSciNet: MR2595541 ·Zbl 1221.15038 ·doi:10.1137/090750688
[58]STASICA, J. (2003). Smooth points of a semialgebraic set. Ann. Polon. Math. 82 149-153. Digital Object Identifier: 10.4064/ap82-2-5 Google Scholar: Lookup Link MathSciNet: MR2041841 ·Zbl 1056.14080 ·doi:10.4064/ap82-2-5
[59]TUTTE, W. T. (1963). How to draw a graph. Proc. Lond. Math. Soc. (3) 13 743-767. Digital Object Identifier: 10.1112/plms/s3-13.1.743 Google Scholar: Lookup Link MathSciNet: MR0158387 zbMATH: 0115.40805 ·Zbl 0115.40805 ·doi:10.1112/plms/s3-13.1.743
[60]UHLER, C. (2012). Geometry of maximum likelihood estimation in Gaussian graphical models. Ann. Statist. 40 238-261. Digital Object Identifier: 10.1214/11-AOS957 Google Scholar: Lookup Link MathSciNet: MR3014306 ·Zbl 1246.62140 ·doi:10.1214/11-AOS957
[61]VANDENBERGHE, L., BOYD, S. and WU, S.-P. (1998). Determinant maximization with linear matrix inequality constraints. SIAM J. Matrix Anal. Appl. 19 499-533. Digital Object Identifier: 10.1137/S0895479896303430 Google Scholar: Lookup Link MathSciNet: MR1614078 ·Zbl 0959.90039 ·doi:10.1137/S0895479896303430
[62]WHITELEY, W. (1983). Cones, infinity and 1-story buildings. Struct. Topol. 8 53-70. MathSciNet: MR0721956 ·Zbl 0545.51017
[63]WORMALD, N. C. (1999). Models of random regular graphs. In Surveys in Combinatorics, 1999 (Canterbury). London Mathematical Society Lecture Note Series 267 239-298. Cambridge Univ. Press, Cambridge. MathSciNet: MR1725006 ·Zbl 0935.05080
[64]WU, X., YE, Y. and SUBRAMANIAN, K. R. (2003). Interactive analysis of gene interactions using graphical Gaussian model. In Proceedings of the 3rd International Conference on Data Mining in Bioinformatics 63-69.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp