Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Nonintersecting paths, pfaffians, and plane partitions.(English)Zbl 0790.05007

Gessel and Viennot have developed a powerful technique for enumerating various classes of plane partitions. There are two fundamental ideas behind this technique. The first is the observation that most classes of plane partitions that are of interest—either by association with the representation theory of the classical groups, or for purely combinatorial reasons—can be interpreted as configurations of nonintersecting paths in a digraph (usually the lattice \(\mathbb{Z}^ 2)\). The second is the observation that the number of \(r\)-tuples of nonintersecting paths between two sets of \(r\) vertices can (often) be expressed as a determinant.
The purpose of this article is to show by similar means that one may use pfaffians to enumerate configurations of nonintersecting paths in which the initial and/or terminal vertices of the path are allowed to vary over specified regions of the digraph. This leads to the possibility of enumerating classes of plane partitions in which the shape is allowed to vary, whereas the previous applications of Gessel and Viennot were largely confined to plane partitions of a given shape.
We have made no attempt to catalogue all possible classes of plane partitions that one could enumerate by these techniques; rather, we have confined ourselves to providing new, simple, unified proofs of a diverse collection of known results, including identities of Gansner, Józefiak and Pragacz, Gordon, Gordon and Houten, Goulden, Lascoux and Pragacz, and Okada. In one instance, we give a new result; namely, a pfaffian for the number of totally symmetric, self-complementary plane partitions. It seems likely that the number of plane partitions belonging to the other symmetry classes for which there are only conjectured formulas could also be expressed as pfaffians. We will not pursue this further here, except to note that Okada has already done this for the totally symmetric case.

MSC:

05A15 Exact enumeration problems, generating functions
05A17 Combinatorial aspects of partitions of integers
05A19 Combinatorial identities, bijective combinatorics
05E10 Combinatorial aspects of representation theory
11P83 Partitions; congruences and congruential restrictions
05C20 Directed graphs (digraphs), tournaments
05C38 Paths and cycles

Cite

References:

[1]Andrews, G. E., Plane partitions (I): The MacMahon conjecture, (Studies in Foundations and Combinatorics. Studies in Foundations and Combinatorics, Adv. in Math. Suppl. Stud., Vol. 1 (1978), Academic Press: Academic Press New York), 131-150 ·Zbl 0462.10010
[2]Bender, E. A.; Knuth, D. E., Enumeration of plane partitions, J. Combin. Theory Ser. A, 13, 40-54 (1972) ·Zbl 0246.05010
[3]Désarménien, J., Une généralisation des formules de Gordon et de MacMahon, C. R. Acad. Sci. Paris Sér. I Math., 309, 269-272 (1989) ·Zbl 0721.05007
[4]W. F. Doran;W. F. Doran ·Zbl 0795.05008
[5]Egẽciog̃lu, Ö. N.; Remmel, J. B., A combinatorial proof of the Giambelli identity for Schur functions, Adv. in Math., 70, 59-86 (1988) ·Zbl 0659.05006
[6]Gansner, E. R., The Hillman-Grassl correspondence and the enumeration of reverse plane partitions, J. Combin. Theory Ser. A, 30, 71-89 (1981) ·Zbl 0474.05008
[7]Gessel, I. M., Symmetric functions and \(P\)-recursiveness, J. Combin. Theory Ser. A, 53, 257-285 (1990) ·Zbl 0704.05001
[8]Gessel, I. M.; Viennot, G., Binomial determinants, paths, and hook length formulae, Adv. in Math., 58, 300-321 (1985) ·Zbl 0579.05004
[9]I. M. Gessel and G. Viennot;I. M. Gessel and G. Viennot ·Zbl 0579.05004
[10]Gordon, B.; Houten, L., Notes on plane partitions II, J. Combin. Theory, 4, 81-99 (1968) ·Zbl 0153.32803
[11]Gordon, B., Notes on plane partitions V, J. Combin. Theory Ser. B, 11, 157-168 (1971) ·Zbl 0245.05006
[12]Gordon, B., A proof of the Bender-Knuth conjecture, Pacific J. Math., 108, 99-113 (1983) ·Zbl 0533.05005
[13]I. P. GouldenDiscrete Math.;I. P. GouldenDiscrete Math. ·Zbl 0782.05087
[14]T. Józefiak and P. Pragacz\(Q\);T. Józefiak and P. Pragacz\(Q\)
[15]King, R. C., Modification rules and products of irreducible representations of the unitary, orthogonal, and symplectic groups, J. Math. Phys., 12, 1588-1598 (1971) ·Zbl 0239.20061
[16]Koike, K.; Terada, I., Young diagrammatic methods for the representation theory of the classical groups of type \(B_n, C_{n\) ·Zbl 0622.20033
[17]Lascoux, A.; Pragacz, P., Équerres et fonctions de Schur, C. R. Acad. Sci. Paris Sér. Math. I, 299, 955-958 (1984) ·Zbl 0579.05012
[18]Lindström, B., On the vector representations of induced matroids, Bull. London Math. Soc., 5, 85-90 (1973) ·Zbl 0262.05018
[19]Littlewood, D. E., On certain symmetric functions, Proc. London Math. Soc., 11, 3, 485-498 (1961) ·Zbl 0099.25102
[20]Macdonald, I. G., Symmetric Functions and Hall Polynomials (1979), Oxford Univ. Press: Oxford Univ. Press Oxford ·Zbl 0487.20007
[21]Mills, W. H.; Robbins, D. P.; Rumsey, H., Self-complementary totally symmetric plane partitions, J. Combin. Theory Ser. A, 42, 277-292 (1986) ·Zbl 0615.05011
[22]Okada, S., On the generating functions for certain classes of plane partitions, J. Combin. Theory Ser. A, 51, 1-23 (1989) ·Zbl 0678.05003
[23]R. A. ProctorEurop. J. Combin.;R. A. ProctorEurop. J. Combin. ·Zbl 0726.05008
[24]R. A. Proctor;R. A. Proctor ·Zbl 0809.20030
[25]Sagan, B. E., Enumeration of partitions with hooklengths, European J. Combin., 3, 85-94 (1982) ·Zbl 0483.05010
[26]Sagan, B. E., Shifted tableaux, Schur \(Q\)-functions and a conjecture of R. Stanley, J. Combin. Theory Ser. A, 45, 62-103 (1987) ·Zbl 0661.05010
[27]de Sainte-Catherine, M.; Viennot, G., Enumeration of certain Young tableaux with bounded height, (Labelle, G.; Leroux, P., Combinatoire Énumérative. Combinatoire Énumérative, Lecture Notes in Mathematics, Vol. 1234 (1985), Springer-Verlag: Springer-Verlag Berlin), 58-67 ·Zbl 0615.05009
[28]Schur, I., Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math., 139, 155-250 (1911) ·JFM 42.0154.02
[29]Stanley, R. P., Ordered structures and partitions, Mem. Amer. Math. Soc., 119 (1972) ·Zbl 0246.05007
[30]Stanley, R. P., (Enumerative Combinatorics, Vol. I (1986), Wadsworth: Wadsworth Monterey, CA) ·Zbl 0608.05001
[31]Stanley, R. P., Symmetries of plane partitions, J. Combin. Theory Ser. A, 43, 103-113 (1986) ·Zbl 0602.05007
[32]Stembridge, J. R., Shifted tableaux and the projective representations of symmetric groups, Adv. in Math., 74, 87-134 (1989) ·Zbl 0677.20012
[33]J. R. StembridgeTrans. Amer. Math. Soc.;J. R. StembridgeTrans. Amer. Math. Soc. ·Zbl 0707.05006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp