Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Knots, perturbative series and quantum modularity.(English)Zbl 07897506

Summary: We introduce an invariant of a hyperbolic knot which is a map \(\alpha\mapsto\mathbf{\Phi}_\alpha(h)\) from \(\mathbb{Q}/\mathbb{Z}\) to matrices with entries in \(\overline{\mathbb{Q}}[[h]]\) and with rows and columns indexed by the boundary parabolic \(\mathrm{SL}_2(\mathbb{C})\) representations of the fundamental group of the knot. These matrix invariants have a rich structure: (a) their \((\sigma_0,\sigma_1)\) entry, where \(\sigma_0\) is the trivial and \(\sigma_1\) the geometric representation, is the power series expansion of the Kashaev invariant of the knot around the root of unity \(\mathrm{e}^{2\pi\mathrm{i}\alpha}\) as an element of the Habiro ring, and the remaining entries belong to generalized Habiro rings of number fields; (b) the first column is given by the perturbative power series of Dimofte-Garoufalidis; (c) the columns of \(\mathbf{\Phi}\) are fundamental solutions of a linear \(q\)-difference equation; (d) the matrix defines an \(\mathrm{SL}_2(\mathbb{Z})\)-cocycle \(W_\gamma\) in matrix-valued functions on \(\mathbb{Q}\) that conjecturally extends to a smooth function on \(\mathbb{R}\) and even to holomorphic functions on suitable complex cut planes, lifting the factorially divergent series \(\mathbf{\Phi}(h)\) to actual functions. The two invariants \(\mathbf{\Phi}\) and \(W_\gamma\) are related by a refined quantum modularity conjecture which we illustrate in detail for the three simplest hyperbolic knots, the \(4_1, 5_2\) and \((-2,3,7)\) pretzel knots. This paper has two sequels, one giving a different realization of our invariant as a matrix of convergent \(q\)-series with integer coefficients and the other studying its Habiro-like arithmetic properties in more depth.

MSC:

57K30 General topology of 3-manifolds
57K16 Finite-type and quantum invariants, topological quantum field theories (TQFT)
57K14 Knot polynomials
57K10 Knot theory

Software:

Knot Atlas;OEIS

Cite

References:

[1]Andersen, J{\o}rgen Ellegaard and Kashaev, Rinat, A {TQFT} from quantum {T}eichm\"uller theory, Communications in Mathematical Physics, 330, 3, 887-934, (2014) ·Zbl 1305.57024 ·doi:10.1007/s00220-014-2073-2
[2]Atiyah, M. F. and Hirzebruch, F., Cohomologie-{O}perationen und charakteristische {K}lassen, Mathematische Zeitschrift, 77, 149-187, (1961) ·Zbl 0109.16002 ·doi:10.1007/BF01180171
[3]Bar-Natan, D., KnotAtlas
[4]Beem, Christopher and Dimofte, Tudor and Pasquetti, Sara, Holomorphic blocks in three dimensions, Journal of High Energy Physics, 2014, 12, no. 12, 177, 118 pages, (2014) ·Zbl 1333.81309 ·doi:10.1007/JHEP12(2014)177
[5]Bender, Carl M. and Orszag, Steven A., Advanced mathematical methods for scientists and engineers, Int. Ser. Monogr. Pure Appl. Math., xiv+593, (1978), McGraw-Hill Book Co., New York ·Zbl 0417.34001
[6]Bettin, S. and Drappeau, S., Modularity and value distribution of quantum invariants of hyperbolic knots, Mathematische Annalen, 382, 3-4, 1631-1679, (2022) ·Zbl 1503.57008 ·doi:10.1007/s00208-021-02288-2
[7]Borot, Ga\"etan and Eynard, Bertrand, All order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of {A}-polynomials, Quantum Topology, 6, 1, 39-138, (2015) ·Zbl 1335.57019 ·doi:10.4171/QT/60
[8]Boyd, David W. and Rodriguez-Villegas, Fernando, Mahler’s measure and the dilogarithm. {(II)}, (2005)
[9]Calegari, Danny, Real places and torus bundles, Geometriae Dedicata, 118, 209-227, (2006) ·Zbl 1420.57047 ·doi:10.1007/s10711-005-9037-9
[10]Calegari, Frank and Garoufalidis, Stavros and Zagier, Don, Bloch groups, algebraic {\(K\)}-theory, units, and {N}ahm’s conjecture, Annales Scientifiques de l’\'Ecole Normale Sup\'erieure. Quatri\`eme S\'erie, 56, 2, 383-426, (2023) ·Zbl 1528.11033 ·doi:10.24033/asens.2537
[11]Cooper, D. and Culler, M. and Gillet, H. and Long, D. D. and Shalen, P. B., Plane curves associated to character varieties of {\(3\)}-manifolds, Inventiones Mathematicae, 118, 1, 47-84, (1994) ·Zbl 0842.57013 ·doi:10.1007/BF01231526
[12]Culler, M. and Dunfield, N. and Weeks, J., Snap{P}y, a computer program for studying the topology of \(3\)-manifolds
[13]Dimofte, Tudor and Gaiotto, Davide and Gukov, Sergei, Gauge theories labelled by three-manifolds, Communications in Mathematical Physics, 325, 2, 367-419, (2014) ·Zbl 1292.57012 ·doi:10.1007/s00220-013-1863-2
[14]Dimofte, Tudor and Garoufalidis, Stavros, The quantum content of the gluing equations, Geometry & Topology, 17, 3, 1253-1315, (2013) ·Zbl 1283.57017 ·doi:10.2140/gt.2013.17.1253
[15]Dimofte, Tudor and Garoufalidis, Stavros, Quantum modularity and complex {C}hern–{S}imons theory, Communications in Number Theory and Physics, 12, 1, 1-52, (2018) ·Zbl 1447.57014 ·doi:10.4310/CNTP.2018.v12.n1.a1
[16]Dimofte, Tudor and Gukov, Sergei and Lenells, Jonatan and Zagier, Don, Exact results for perturbative {C}hern–{S}imons theory with complex gauge group, Communications in Number Theory and Physics, 3, 2, 363-443, (2009) ·Zbl 1214.81151 ·doi:10.4310/CNTP.2009.v3.n2.a4
[17]Dunfield, Nathan M. and Thurston, William P., The virtual {H}aken conjecture: experiments and examples, Geometry and Topology, 7, 399-441, (2003) ·Zbl 1037.57015 ·doi:10.2140/gt.2003.7.399
[18]Ekholm, Tobias and Gruen, Angus and Gukov, Sergei and Kucharski, Piotr and Park, Sunghyuk and Sulkowski, Piotr, {\( \widehat{Z} \)} at large {\(N\)}: from curve counts to quantum modularity, Communications in Mathematical Physics, 396, 1, 143-186, (2022) ·Zbl 1512.81062 ·doi:10.1007/s00220-022-04469-9
[19]Faddeev, L. D., Discrete {H}eisenberg–{W}eyl group and modular group, Letters in Mathematical Physics, 34, 3, 249-254, (1995) ·Zbl 0836.47012 ·doi:10.1007/BF01872779
[20]Faddeev, L. D. and Kashaev, R. M., Quantum dilogarithm, Modern Physics Letters A. Gravitation, Cosmology, Astrophysics, Nuclear Physics, Particles and Fields, Accelerator Physics, Quantum Information, 9, 5, 427-434, (1994) ·Zbl 0866.17010 ·doi:10.1142/S0217732394000447
[21]Fock, Vladimir and Goncharov, Alexander, Moduli spaces of local systems and higher {T}eichm\"uller theory, Publications Math\'ematiques. Institut de Hautes \'Etudes Scientifiques, 103, 1-211, (2006) ·Zbl 1099.14025 ·doi:10.1007/s10240-006-0039-4
[22]Gang, Dongmin and Kim, Seonhwa and Yoon, Seokbeom, Adjoint {R}eidemeister torsions from wrapped {M}5-branes, Advances in Theoretical and Mathematical Physics, 25, 7, 1819-1845, (2021) ·Zbl 1498.81105 ·doi:10.4310/atmp.2021.v25.n7.a4
[23]Garoufalidis, Stavros, Chern–{S}imons theory, analytic continuation and arithmetic, Acta Mathematica Vietnamica, 33, 3, 335-362, (2008) ·Zbl 1189.57010
[24]Garoufalidis, Stavros, Twist knots data
[25]Garoufalidis, Stavros, Pretzel knots data ·Zbl 1255.57012
[26]Garoufalidis, Stavros and Goerner, Matthias and Zickert, Christian K., The {P}tolemy field of 3-manifold representations, Algebraic & Geometric Topology, 15, 1, 371-397, (2015) ·Zbl 1322.57018 ·doi:10.2140/agt.2015.15.371
[27]Garoufalidis, Stavros and Gu, Jie and Mari\~no, Marcos, Peacock patterns and resurgence in complex {C}hern–{S}imons theory, Research in the Mathematical Sciences, 10, 3, 29, 67 pages, (2023) ·Zbl 07715597 ·doi:10.1007/s40687-023-00391-1
[28]Garoufalidis, Stavros and Gu, Jie and Mari\~no, Marcos, The resurgent structure of quantum knot invariants, Communications in Mathematical Physics, 386, 1, 469-493, (2021) ·Zbl 1469.81047 ·doi:10.1007/s00220-021-04076-0
[29]Garoufalidis, Stavros and Kashaev, Rinat, Evaluation of state integrals at rational points, Communications in Number Theory and Physics, 9, 3, 549-582, (2015) ·Zbl 1364.81216 ·doi:10.4310/CNTP.2015.v9.n3.a3
[30]Garoufalidis, Stavros and Kashaev, Rinat, From state integrals to {\(q\)}-series, Mathematical Research Letters, 24, 3, 781-801, (2017) ·Zbl 1407.57010 ·doi:10.4310/MRL.2017.v24.n3.a8
[31]Garoufalidis, Stavros and Kashaev, Rinat, The descendant colored {J}ones polynomials, Pure and Applied Mathematics Quarterly, 19, 5, 2307-2334, (2023) ·Zbl 1540.81007 ·doi:10.4310/PAMQ.2023.v19.n5.a2
[32]Garoufalidis, Stavros and Kashaev, Rinat and Zagier, D., A modular quantum dilogarithm and invariants of {3}-manifolds
[33]Garoufalidis, Stavros and Koutschan, Christoph, The noncommutative {\(A\)}-polynomial of {\((-2,3,n)\)} pretzel knots, Experimental Mathematics, 21, 3, 241-251, (2012) ·Zbl 1255.57012 ·doi:10.1080/10586458.2012.651409
[34]Garoufalidis, Stavros and Koutschan, Christoph, Irreducibility of {\(q\)}-difference operators and the knot {\(7_4\)}, Algebraic & Geometric Topology, 13, 6, 3261-3286, (2013) ·Zbl 1311.57017 ·doi:10.2140/agt.2013.13.3261
[35]Garoufalidis, Stavros and L\^e, Thang T. Q., From 3-dimensional skein theory to functions near {\( \mathbb{Q} \)}, Annales de l’Institut Fourier
[36]Garoufalidis, Stavros and L\^e, Thang T. Q., The colored {J}ones function is {\(q\)}-holonomic, Geometry and Topology, 9, 1253-1293, (2005) ·Zbl 1078.57012 ·doi:10.2140/gt.2005.9.1253
[37]Garoufalidis, Stavros and Sabo, Eric and Scott, Shane, Exact computation of the {\(n\)}-loop invariants of knots, Experimental Mathematics, 25, 2, 125-129, (2016) ·Zbl 1336.57019 ·doi:10.1080/10586458.2015.1048012
[38]Garoufalidis, Stavros and Scholze, P. and Wheeler, C. and Zagier, Don, The {H}abiro ring of a number field
[39]Garoufalidis, Stavros and Sun, Xinyu, The non-commutative {\(A\)}-polynomial of twist knots, Journal of Knot Theory and its Ramifications, 19, 12, 1571-1595, (2010) ·Zbl 1222.57008 ·doi:10.1142/S021821651000856X
[40]Garoufalidis, Stavros and Thurston, Dylan P. and Zickert, Christian K., The complex volume of {\({\rm SL}(n,\mathbb{C})\)}-representations of 3-manifolds, Duke Mathematical Journal, 164, 11, 2099-2160, (2015) ·Zbl 1335.57034 ·doi:10.1215/00127094-3121185
[41]Garoufalidis, Stavros and van der Veen, Roland, Asymptotics of classical spin networks (with an appendix by {D}on {Z}agier), Geometry & Topology, 17, 1, 1-37, (2013) ·Zbl 1277.57020 ·doi:10.2140/gt.2013.17.1
[42]Garoufalidis, Stavros and Zagier, Don, Resummation of factorially divergent series
[43]Garoufalidis, Stavros and Zagier, Don, Asymptotics of {N}ahm sums at roots of unity, Ramanujan Journal. An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan, 55, 1, 219-238, (2021) ·Zbl 1479.57031 ·doi:10.1007/s11139-020-00266-x
[44]Garoufalidis, Stavros and Zagier, Don, Hyperbolic 3-manifolds, the {B}loch group, and the work of {W}alter {N}eumann
[45]Garoufalidis, Stavros and Zagier, Don, Knots and their related {\(q\)}-series, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 19, 082, 39 pages, (2023) ·Zbl 1532.57004 ·doi:10.3842/SIGMA.2023.082
[46]Goette, Sebastian and Zickert, Christian K., The extended {B}loch group and the {C}heeger–{C}hern–{S}imons class, Geometry & Topology, 11, 1623-1635, (2007) ·Zbl 1201.57019 ·doi:10.2140/gt.2007.11.1623
[47]Gr\"unberg, Daniel B. and Moree, Pieter and Zagier, Don, Sequences of enumerative geometry: congruences and asymptotics, Experimental Mathematics, 17, 4, 409-426, (2008) ·Zbl 1182.11047 ·doi:10.1080/10586458.2008.10128870
[48]Gukov, Sergei, Three-dimensional quantum gravity, {C}hern–{S}imons theory, and the {A}-polynomial, Communications in Mathematical Physics, 255, 3, 577-627, (2005) ·Zbl 1115.57009 ·doi:10.1007/s00220-005-1312-y
[49]Gukov, Sergei and Mari\~no, Marcos and Putrov, Pavel, Resurgence in complex {C}hern–{S}imons theory
[50]Gukov, Sergei and Pei, Du and Putrov, Pavel and Vafa, Cumrun, B{PS} spectra and 3-manifold invariants, Journal of Knot Theory and its Ramifications, 29, 2, 2040003, 85 pages, (2020) ·Zbl 1448.57020 ·doi:10.1142/S0218216520400039
[51]Gunningham, Sam and Jordan, David and Safronov, Pavel, The finiteness conjecture for skein modules, Inventiones Mathematicae, 232, 1, 301-363, (2023) ·Zbl 1527.57014 ·doi:10.1007/s00222-022-01167-0
[52]Habiro, Kazuo, On the quantum {\( \rm sl_2\)} invariants of knots and integral homology spheres, Invariants of {K}nots and 3-manifolds, Geom. Topol. Monogr., 4, 55-68, (2002), Geometry & Topology Publications, Coventry ·Zbl 1040.57010
[53]Hikami, Kazuhiro, Generalized volume conjecture and the {\(A\)}-polynomials: the {N}eumann–{Z}agier potential function as a classical limit of the partition function, Journal of Geometry and Physics, 57, 9, 1895-1940, (2007) ·Zbl 1139.57013 ·doi:10.1016/j.geomphys.2007.03.008
[54]Hirzebruch, Friedrich, Topological methods in algebraic geometry, Class. Math., xii+234, (1995), Springer, Berlin ·Zbl 0843.14009 ·doi:10.1007/978-3-642-62018-8
[55]Hirzebruch, F. and Zagier, D., The {A}tiyah–{S}inger theorem and elementary number theory, Math. Lect. Ser., 3, xii+262, (1974), Publish or Perish, Inc., Boston, MA ·Zbl 0288.10001
[56]Igusa, Junichi, Theta functions, Grundlehren Math. Wiss., 194, x+232, (1972), Springer, New York ·Zbl 0251.14016 ·doi:10.1007/978-3-642-65315-5
[57]Jones, V. F. R., Hecke algebra representations of braid groups and link polynomials, Annals of Mathematics. Second Series, 126, 2, 335-388, (1987) ·Zbl 0631.57005 ·doi:10.2307/1971403
[58]Kashaev, Rinat, A link invariant from quantum dilogarithm, Modern Physics Letters A. Gravitation, Cosmology, Astrophysics, Nuclear Physics, Particles and Fields, Accelerator Physics, Quantum Information, 10, 19, 1409-1418, (1995) ·Zbl 1022.81574 ·doi:10.1142/S0217732395001526
[59]Kashaev, Rinat, The hyperbolic volume of knots from the quantum dilogarithm, Letters in Mathematical Physics, 39, 3, 269-275, (1997) ·Zbl 0876.57007 ·doi:10.1023/A:1007364912784
[60]Kashaev, Rinat and Mangazeev, V. and Stroganov, Yu., Star-square and tetrahedron equations in the {B}axter–{B}azhanov model, International Journal of Modern Physics A. Particles and Fields. Gravitation. Cosmology, 8, 8, 1399-1409, (1993) ·doi:10.1142/S0217751X93000588
[61]Kontsevich, M., Talks on resurgence
[62]Lawrence, Ruth and Zagier, Don, Modular forms and quantum invariants of {\(3\)}-manifolds, Asian Journal of Mathematics, 3, 1, 93-107, (1999) ·Zbl 1024.11028 ·doi:10.4310/AJM.1999.v3.n1.a5
[63]Lewis, J. and Zagier, D., Period functions for {M}aass wave forms. {I}, Annals of Mathematics. Second Series, 153, 1, 191-258, (2001) ·Zbl 1061.11021 ·doi:10.2307/2661374
[64]Murakami, Hitoshi and Murakami, Jun, The colored {J}ones polynomials and the simplicial volume of a knot, Acta Mathematica, 186, 1, 85-104, (2001) ·Zbl 0983.57009 ·doi:10.1007/BF02392716
[65]Neumann, Walter D., Combinatorics of triangulations and the {C}hern–{S}imons invariant for hyperbolic {\(3\)}-manifolds, Topology ’90 ({C}olumbus, {OH}, 1990), Ohio State Univ. Math. Res. Inst. Publ., 1, 243-271, (1992), de Gruyter, Berlin ·Zbl 0768.57006 ·doi:10.1515/9783110857726.243
[66]Neumann, Walter D., Extended {B}loch group and the {C}heeger–{C}hern–{S}imons class, Geometry and Topology, 8, 413-474, (2004) ·Zbl 1053.57010 ·doi:10.2140/gt.2004.8.413
[67]Neumann, Walter D. and Zagier, Don, Volumes of hyperbolic three-manifolds, Topology. An International Journal of Mathematics, 24, 3, 307-332, (1985) ·Zbl 0589.57015 ·doi:10.1016/0040-9383(85)90004-7
[68]Ohtsuki, Tomotada, A polynomial invariant of rational homology {\(3\)}-spheres, Inventiones Mathematicae, 123, 2, 241-257, (1996) ·Zbl 0855.57016 ·doi:10.1007/s002220050025
[69]Rademacher, Hans, Zur {T}heorie der {D}edekindschen {S}ummen, Mathematische Zeitschrift, 63, 445-463, (1956) ·Zbl 0071.04201 ·doi:10.1007/BF01187951
[70]Sloane, N., Online encyclopedia of integer sequences
[71]Suslin, A. A., {\(K_3\)} of a field, and the {B}loch group, Proc. Steklov Inst. Math., 1991, no. 4, 217-239, (1991) ·Zbl 0741.19005
[72]Thurston, W., The geometry and topology of 3-manifolds, Universitext, xii+262, (1977), Springer, Berlin
[73]Turaev, V. G., The {Y}ang–{B}axter equation and invariants of links, Inventiones Mathematicae, 92, 3, 527-553, (1988) ·Zbl 0648.57003 ·doi:10.1007/BF01393746
[74]van der Veen, Roland, Proof of the volume conjecture for {W}hitehead chains, Acta Mathematica Vietnamica, 33, 3, 421-431, (2008) ·Zbl 1184.57009
[75]Vlasenko, Masha and Zwegers, Sander, Nahm’s conjecture: asymptotic computations and counterexamples, Communications in Number Theory and Physics, 5, 3, 617-642, (2011) ·Zbl 1256.81102 ·doi:10.4310/CNTP.2011.v5.n3.a2
[76]Wheeler, C., Modular {\(q\)}-difference equations and quantum invariants of hyperbolic three-manifolds
[77]Wilf, Herbert S. and Zeilberger, Doron, An algorithmic proof theory for hypergeometric (ordinary and “{\(q\)}”) multisum/integral identities, Inventiones Mathematicae, 108, 3, 575-633, (1992) ·Zbl 0739.05007 ·doi:10.1007/BF02100618
[78]Witten, Edward, Searching for new invariants of 4-manifolds and knots
[79]Witten, Edward, Analytic continuation of {C}hern–{S}imons theory, Chern–{S}imons {G}auge {T}heory: 20 {Y}ears {A}fter, AMS/IP Stud. Adv. Math., 50, 347-446, (2011), American Mathematical Society, Providence, RI ·Zbl 1337.81106 ·doi:10.1090/amsip/050/19
[80]Witten, Edward, Fivebranes and knots, Quantum Topology, 3, 1, 1-137, (2012) ·Zbl 1241.57041 ·doi:10.4171/QT/26
[81]Witten, Edward, Two lectures on the {J}ones polynomial and {K}hovanov homology, Lectures on {G}eometry, Clay Lect. Notes, 1-27, (2017), Oxford University Press, Oxford ·Zbl 1393.57004
[82]Zagier, Don, Holomorphic quantum modular forms
[83]Zagier, Don, Vassiliev invariants and a strange identity related to the {D}edekind eta-function, Topology. An International Journal of Mathematics, 40, 5, 945-960, (2001) ·Zbl 0989.57009 ·doi:10.1016/S0040-9383(00)00005-7
[84]Zagier, Don, The dilogarithm function, Frontiers in {N}umber {T}heory, {P}hysics, and {G}eometry. {II}, 3-65, (2007), Springer, Berlin ·Zbl 1176.11026 ·doi:10.1007/978-3-540-30308-4_1
[85]Zagier, Don, Quantum modular forms, Quanta of {M}aths, Clay Math. Proc., 11, 659-675, (2010), American Mathematical Society, Providence, RI ·Zbl 1294.11084
[86]Zagier, Don and Gangl, Herbert, Classical and elliptic polylogarithms and special values of {\(L\)}-series, The Arithmetic and Geometry of Algebraic Cycles ({B}anff, {AB}, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, 561-615, (2000), Kluwer, Dordrecht ·Zbl 0990.11041 ·doi:10.1007/978-94-011-4098-0_21
[87]Zickert, Christian K., The volume and {C}hern–{S}imons invariant of a representation, Duke Mathematical Journal, 150, 3, 489-532, (2009) ·Zbl 1246.58019 ·doi:10.1215/00127094-2009-058
[88]Zickert, Christian K., The extended {B}loch group and algebraic {\(K\)}-theory, Journal f\"ur die Reine und Angewandte Mathematik. [Crelle’s Journal], 704, 21-54, (2015) ·Zbl 1334.19004 ·doi:10.1515/crelle-2013-0055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp