[1] | Andersen, J{\o}rgen Ellegaard and Kashaev, Rinat, A {TQFT} from quantum {T}eichm\"uller theory, Communications in Mathematical Physics, 330, 3, 887-934, (2014) ·Zbl 1305.57024 ·doi:10.1007/s00220-014-2073-2 |
[2] | Atiyah, M. F. and Hirzebruch, F., Cohomologie-{O}perationen und charakteristische {K}lassen, Mathematische Zeitschrift, 77, 149-187, (1961) ·Zbl 0109.16002 ·doi:10.1007/BF01180171 |
[3] | Bar-Natan, D., KnotAtlas |
[4] | Beem, Christopher and Dimofte, Tudor and Pasquetti, Sara, Holomorphic blocks in three dimensions, Journal of High Energy Physics, 2014, 12, no. 12, 177, 118 pages, (2014) ·Zbl 1333.81309 ·doi:10.1007/JHEP12(2014)177 |
[5] | Bender, Carl M. and Orszag, Steven A., Advanced mathematical methods for scientists and engineers, Int. Ser. Monogr. Pure Appl. Math., xiv+593, (1978), McGraw-Hill Book Co., New York ·Zbl 0417.34001 |
[6] | Bettin, S. and Drappeau, S., Modularity and value distribution of quantum invariants of hyperbolic knots, Mathematische Annalen, 382, 3-4, 1631-1679, (2022) ·Zbl 1503.57008 ·doi:10.1007/s00208-021-02288-2 |
[7] | Borot, Ga\"etan and Eynard, Bertrand, All order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of {A}-polynomials, Quantum Topology, 6, 1, 39-138, (2015) ·Zbl 1335.57019 ·doi:10.4171/QT/60 |
[8] | Boyd, David W. and Rodriguez-Villegas, Fernando, Mahler’s measure and the dilogarithm. {(II)}, (2005) |
[9] | Calegari, Danny, Real places and torus bundles, Geometriae Dedicata, 118, 209-227, (2006) ·Zbl 1420.57047 ·doi:10.1007/s10711-005-9037-9 |
[10] | Calegari, Frank and Garoufalidis, Stavros and Zagier, Don, Bloch groups, algebraic {\(K\)}-theory, units, and {N}ahm’s conjecture, Annales Scientifiques de l’\'Ecole Normale Sup\'erieure. Quatri\`eme S\'erie, 56, 2, 383-426, (2023) ·Zbl 1528.11033 ·doi:10.24033/asens.2537 |
[11] | Cooper, D. and Culler, M. and Gillet, H. and Long, D. D. and Shalen, P. B., Plane curves associated to character varieties of {\(3\)}-manifolds, Inventiones Mathematicae, 118, 1, 47-84, (1994) ·Zbl 0842.57013 ·doi:10.1007/BF01231526 |
[12] | Culler, M. and Dunfield, N. and Weeks, J., Snap{P}y, a computer program for studying the topology of \(3\)-manifolds |
[13] | Dimofte, Tudor and Gaiotto, Davide and Gukov, Sergei, Gauge theories labelled by three-manifolds, Communications in Mathematical Physics, 325, 2, 367-419, (2014) ·Zbl 1292.57012 ·doi:10.1007/s00220-013-1863-2 |
[14] | Dimofte, Tudor and Garoufalidis, Stavros, The quantum content of the gluing equations, Geometry & Topology, 17, 3, 1253-1315, (2013) ·Zbl 1283.57017 ·doi:10.2140/gt.2013.17.1253 |
[15] | Dimofte, Tudor and Garoufalidis, Stavros, Quantum modularity and complex {C}hern–{S}imons theory, Communications in Number Theory and Physics, 12, 1, 1-52, (2018) ·Zbl 1447.57014 ·doi:10.4310/CNTP.2018.v12.n1.a1 |
[16] | Dimofte, Tudor and Gukov, Sergei and Lenells, Jonatan and Zagier, Don, Exact results for perturbative {C}hern–{S}imons theory with complex gauge group, Communications in Number Theory and Physics, 3, 2, 363-443, (2009) ·Zbl 1214.81151 ·doi:10.4310/CNTP.2009.v3.n2.a4 |
[17] | Dunfield, Nathan M. and Thurston, William P., The virtual {H}aken conjecture: experiments and examples, Geometry and Topology, 7, 399-441, (2003) ·Zbl 1037.57015 ·doi:10.2140/gt.2003.7.399 |
[18] | Ekholm, Tobias and Gruen, Angus and Gukov, Sergei and Kucharski, Piotr and Park, Sunghyuk and Sulkowski, Piotr, {\( \widehat{Z} \)} at large {\(N\)}: from curve counts to quantum modularity, Communications in Mathematical Physics, 396, 1, 143-186, (2022) ·Zbl 1512.81062 ·doi:10.1007/s00220-022-04469-9 |
[19] | Faddeev, L. D., Discrete {H}eisenberg–{W}eyl group and modular group, Letters in Mathematical Physics, 34, 3, 249-254, (1995) ·Zbl 0836.47012 ·doi:10.1007/BF01872779 |
[20] | Faddeev, L. D. and Kashaev, R. M., Quantum dilogarithm, Modern Physics Letters A. Gravitation, Cosmology, Astrophysics, Nuclear Physics, Particles and Fields, Accelerator Physics, Quantum Information, 9, 5, 427-434, (1994) ·Zbl 0866.17010 ·doi:10.1142/S0217732394000447 |
[21] | Fock, Vladimir and Goncharov, Alexander, Moduli spaces of local systems and higher {T}eichm\"uller theory, Publications Math\'ematiques. Institut de Hautes \'Etudes Scientifiques, 103, 1-211, (2006) ·Zbl 1099.14025 ·doi:10.1007/s10240-006-0039-4 |
[22] | Gang, Dongmin and Kim, Seonhwa and Yoon, Seokbeom, Adjoint {R}eidemeister torsions from wrapped {M}5-branes, Advances in Theoretical and Mathematical Physics, 25, 7, 1819-1845, (2021) ·Zbl 1498.81105 ·doi:10.4310/atmp.2021.v25.n7.a4 |
[23] | Garoufalidis, Stavros, Chern–{S}imons theory, analytic continuation and arithmetic, Acta Mathematica Vietnamica, 33, 3, 335-362, (2008) ·Zbl 1189.57010 |
[24] | Garoufalidis, Stavros, Twist knots data |
[25] | Garoufalidis, Stavros, Pretzel knots data ·Zbl 1255.57012 |
[26] | Garoufalidis, Stavros and Goerner, Matthias and Zickert, Christian K., The {P}tolemy field of 3-manifold representations, Algebraic & Geometric Topology, 15, 1, 371-397, (2015) ·Zbl 1322.57018 ·doi:10.2140/agt.2015.15.371 |
[27] | Garoufalidis, Stavros and Gu, Jie and Mari\~no, Marcos, Peacock patterns and resurgence in complex {C}hern–{S}imons theory, Research in the Mathematical Sciences, 10, 3, 29, 67 pages, (2023) ·Zbl 07715597 ·doi:10.1007/s40687-023-00391-1 |
[28] | Garoufalidis, Stavros and Gu, Jie and Mari\~no, Marcos, The resurgent structure of quantum knot invariants, Communications in Mathematical Physics, 386, 1, 469-493, (2021) ·Zbl 1469.81047 ·doi:10.1007/s00220-021-04076-0 |
[29] | Garoufalidis, Stavros and Kashaev, Rinat, Evaluation of state integrals at rational points, Communications in Number Theory and Physics, 9, 3, 549-582, (2015) ·Zbl 1364.81216 ·doi:10.4310/CNTP.2015.v9.n3.a3 |
[30] | Garoufalidis, Stavros and Kashaev, Rinat, From state integrals to {\(q\)}-series, Mathematical Research Letters, 24, 3, 781-801, (2017) ·Zbl 1407.57010 ·doi:10.4310/MRL.2017.v24.n3.a8 |
[31] | Garoufalidis, Stavros and Kashaev, Rinat, The descendant colored {J}ones polynomials, Pure and Applied Mathematics Quarterly, 19, 5, 2307-2334, (2023) ·Zbl 1540.81007 ·doi:10.4310/PAMQ.2023.v19.n5.a2 |
[32] | Garoufalidis, Stavros and Kashaev, Rinat and Zagier, D., A modular quantum dilogarithm and invariants of {3}-manifolds |
[33] | Garoufalidis, Stavros and Koutschan, Christoph, The noncommutative {\(A\)}-polynomial of {\((-2,3,n)\)} pretzel knots, Experimental Mathematics, 21, 3, 241-251, (2012) ·Zbl 1255.57012 ·doi:10.1080/10586458.2012.651409 |
[34] | Garoufalidis, Stavros and Koutschan, Christoph, Irreducibility of {\(q\)}-difference operators and the knot {\(7_4\)}, Algebraic & Geometric Topology, 13, 6, 3261-3286, (2013) ·Zbl 1311.57017 ·doi:10.2140/agt.2013.13.3261 |
[35] | Garoufalidis, Stavros and L\^e, Thang T. Q., From 3-dimensional skein theory to functions near {\( \mathbb{Q} \)}, Annales de l’Institut Fourier |
[36] | Garoufalidis, Stavros and L\^e, Thang T. Q., The colored {J}ones function is {\(q\)}-holonomic, Geometry and Topology, 9, 1253-1293, (2005) ·Zbl 1078.57012 ·doi:10.2140/gt.2005.9.1253 |
[37] | Garoufalidis, Stavros and Sabo, Eric and Scott, Shane, Exact computation of the {\(n\)}-loop invariants of knots, Experimental Mathematics, 25, 2, 125-129, (2016) ·Zbl 1336.57019 ·doi:10.1080/10586458.2015.1048012 |
[38] | Garoufalidis, Stavros and Scholze, P. and Wheeler, C. and Zagier, Don, The {H}abiro ring of a number field |
[39] | Garoufalidis, Stavros and Sun, Xinyu, The non-commutative {\(A\)}-polynomial of twist knots, Journal of Knot Theory and its Ramifications, 19, 12, 1571-1595, (2010) ·Zbl 1222.57008 ·doi:10.1142/S021821651000856X |
[40] | Garoufalidis, Stavros and Thurston, Dylan P. and Zickert, Christian K., The complex volume of {\({\rm SL}(n,\mathbb{C})\)}-representations of 3-manifolds, Duke Mathematical Journal, 164, 11, 2099-2160, (2015) ·Zbl 1335.57034 ·doi:10.1215/00127094-3121185 |
[41] | Garoufalidis, Stavros and van der Veen, Roland, Asymptotics of classical spin networks (with an appendix by {D}on {Z}agier), Geometry & Topology, 17, 1, 1-37, (2013) ·Zbl 1277.57020 ·doi:10.2140/gt.2013.17.1 |
[42] | Garoufalidis, Stavros and Zagier, Don, Resummation of factorially divergent series |
[43] | Garoufalidis, Stavros and Zagier, Don, Asymptotics of {N}ahm sums at roots of unity, Ramanujan Journal. An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan, 55, 1, 219-238, (2021) ·Zbl 1479.57031 ·doi:10.1007/s11139-020-00266-x |
[44] | Garoufalidis, Stavros and Zagier, Don, Hyperbolic 3-manifolds, the {B}loch group, and the work of {W}alter {N}eumann |
[45] | Garoufalidis, Stavros and Zagier, Don, Knots and their related {\(q\)}-series, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 19, 082, 39 pages, (2023) ·Zbl 1532.57004 ·doi:10.3842/SIGMA.2023.082 |
[46] | Goette, Sebastian and Zickert, Christian K., The extended {B}loch group and the {C}heeger–{C}hern–{S}imons class, Geometry & Topology, 11, 1623-1635, (2007) ·Zbl 1201.57019 ·doi:10.2140/gt.2007.11.1623 |
[47] | Gr\"unberg, Daniel B. and Moree, Pieter and Zagier, Don, Sequences of enumerative geometry: congruences and asymptotics, Experimental Mathematics, 17, 4, 409-426, (2008) ·Zbl 1182.11047 ·doi:10.1080/10586458.2008.10128870 |
[48] | Gukov, Sergei, Three-dimensional quantum gravity, {C}hern–{S}imons theory, and the {A}-polynomial, Communications in Mathematical Physics, 255, 3, 577-627, (2005) ·Zbl 1115.57009 ·doi:10.1007/s00220-005-1312-y |
[49] | Gukov, Sergei and Mari\~no, Marcos and Putrov, Pavel, Resurgence in complex {C}hern–{S}imons theory |
[50] | Gukov, Sergei and Pei, Du and Putrov, Pavel and Vafa, Cumrun, B{PS} spectra and 3-manifold invariants, Journal of Knot Theory and its Ramifications, 29, 2, 2040003, 85 pages, (2020) ·Zbl 1448.57020 ·doi:10.1142/S0218216520400039 |
[51] | Gunningham, Sam and Jordan, David and Safronov, Pavel, The finiteness conjecture for skein modules, Inventiones Mathematicae, 232, 1, 301-363, (2023) ·Zbl 1527.57014 ·doi:10.1007/s00222-022-01167-0 |
[52] | Habiro, Kazuo, On the quantum {\( \rm sl_2\)} invariants of knots and integral homology spheres, Invariants of {K}nots and 3-manifolds, Geom. Topol. Monogr., 4, 55-68, (2002), Geometry & Topology Publications, Coventry ·Zbl 1040.57010 |
[53] | Hikami, Kazuhiro, Generalized volume conjecture and the {\(A\)}-polynomials: the {N}eumann–{Z}agier potential function as a classical limit of the partition function, Journal of Geometry and Physics, 57, 9, 1895-1940, (2007) ·Zbl 1139.57013 ·doi:10.1016/j.geomphys.2007.03.008 |
[54] | Hirzebruch, Friedrich, Topological methods in algebraic geometry, Class. Math., xii+234, (1995), Springer, Berlin ·Zbl 0843.14009 ·doi:10.1007/978-3-642-62018-8 |
[55] | Hirzebruch, F. and Zagier, D., The {A}tiyah–{S}inger theorem and elementary number theory, Math. Lect. Ser., 3, xii+262, (1974), Publish or Perish, Inc., Boston, MA ·Zbl 0288.10001 |
[56] | Igusa, Junichi, Theta functions, Grundlehren Math. Wiss., 194, x+232, (1972), Springer, New York ·Zbl 0251.14016 ·doi:10.1007/978-3-642-65315-5 |
[57] | Jones, V. F. R., Hecke algebra representations of braid groups and link polynomials, Annals of Mathematics. Second Series, 126, 2, 335-388, (1987) ·Zbl 0631.57005 ·doi:10.2307/1971403 |
[58] | Kashaev, Rinat, A link invariant from quantum dilogarithm, Modern Physics Letters A. Gravitation, Cosmology, Astrophysics, Nuclear Physics, Particles and Fields, Accelerator Physics, Quantum Information, 10, 19, 1409-1418, (1995) ·Zbl 1022.81574 ·doi:10.1142/S0217732395001526 |
[59] | Kashaev, Rinat, The hyperbolic volume of knots from the quantum dilogarithm, Letters in Mathematical Physics, 39, 3, 269-275, (1997) ·Zbl 0876.57007 ·doi:10.1023/A:1007364912784 |
[60] | Kashaev, Rinat and Mangazeev, V. and Stroganov, Yu., Star-square and tetrahedron equations in the {B}axter–{B}azhanov model, International Journal of Modern Physics A. Particles and Fields. Gravitation. Cosmology, 8, 8, 1399-1409, (1993) ·doi:10.1142/S0217751X93000588 |
[61] | Kontsevich, M., Talks on resurgence |
[62] | Lawrence, Ruth and Zagier, Don, Modular forms and quantum invariants of {\(3\)}-manifolds, Asian Journal of Mathematics, 3, 1, 93-107, (1999) ·Zbl 1024.11028 ·doi:10.4310/AJM.1999.v3.n1.a5 |
[63] | Lewis, J. and Zagier, D., Period functions for {M}aass wave forms. {I}, Annals of Mathematics. Second Series, 153, 1, 191-258, (2001) ·Zbl 1061.11021 ·doi:10.2307/2661374 |
[64] | Murakami, Hitoshi and Murakami, Jun, The colored {J}ones polynomials and the simplicial volume of a knot, Acta Mathematica, 186, 1, 85-104, (2001) ·Zbl 0983.57009 ·doi:10.1007/BF02392716 |
[65] | Neumann, Walter D., Combinatorics of triangulations and the {C}hern–{S}imons invariant for hyperbolic {\(3\)}-manifolds, Topology ’90 ({C}olumbus, {OH}, 1990), Ohio State Univ. Math. Res. Inst. Publ., 1, 243-271, (1992), de Gruyter, Berlin ·Zbl 0768.57006 ·doi:10.1515/9783110857726.243 |
[66] | Neumann, Walter D., Extended {B}loch group and the {C}heeger–{C}hern–{S}imons class, Geometry and Topology, 8, 413-474, (2004) ·Zbl 1053.57010 ·doi:10.2140/gt.2004.8.413 |
[67] | Neumann, Walter D. and Zagier, Don, Volumes of hyperbolic three-manifolds, Topology. An International Journal of Mathematics, 24, 3, 307-332, (1985) ·Zbl 0589.57015 ·doi:10.1016/0040-9383(85)90004-7 |
[68] | Ohtsuki, Tomotada, A polynomial invariant of rational homology {\(3\)}-spheres, Inventiones Mathematicae, 123, 2, 241-257, (1996) ·Zbl 0855.57016 ·doi:10.1007/s002220050025 |
[69] | Rademacher, Hans, Zur {T}heorie der {D}edekindschen {S}ummen, Mathematische Zeitschrift, 63, 445-463, (1956) ·Zbl 0071.04201 ·doi:10.1007/BF01187951 |
[70] | Sloane, N., Online encyclopedia of integer sequences |
[71] | Suslin, A. A., {\(K_3\)} of a field, and the {B}loch group, Proc. Steklov Inst. Math., 1991, no. 4, 217-239, (1991) ·Zbl 0741.19005 |
[72] | Thurston, W., The geometry and topology of 3-manifolds, Universitext, xii+262, (1977), Springer, Berlin |
[73] | Turaev, V. G., The {Y}ang–{B}axter equation and invariants of links, Inventiones Mathematicae, 92, 3, 527-553, (1988) ·Zbl 0648.57003 ·doi:10.1007/BF01393746 |
[74] | van der Veen, Roland, Proof of the volume conjecture for {W}hitehead chains, Acta Mathematica Vietnamica, 33, 3, 421-431, (2008) ·Zbl 1184.57009 |
[75] | Vlasenko, Masha and Zwegers, Sander, Nahm’s conjecture: asymptotic computations and counterexamples, Communications in Number Theory and Physics, 5, 3, 617-642, (2011) ·Zbl 1256.81102 ·doi:10.4310/CNTP.2011.v5.n3.a2 |
[76] | Wheeler, C., Modular {\(q\)}-difference equations and quantum invariants of hyperbolic three-manifolds |
[77] | Wilf, Herbert S. and Zeilberger, Doron, An algorithmic proof theory for hypergeometric (ordinary and “{\(q\)}”) multisum/integral identities, Inventiones Mathematicae, 108, 3, 575-633, (1992) ·Zbl 0739.05007 ·doi:10.1007/BF02100618 |
[78] | Witten, Edward, Searching for new invariants of 4-manifolds and knots |
[79] | Witten, Edward, Analytic continuation of {C}hern–{S}imons theory, Chern–{S}imons {G}auge {T}heory: 20 {Y}ears {A}fter, AMS/IP Stud. Adv. Math., 50, 347-446, (2011), American Mathematical Society, Providence, RI ·Zbl 1337.81106 ·doi:10.1090/amsip/050/19 |
[80] | Witten, Edward, Fivebranes and knots, Quantum Topology, 3, 1, 1-137, (2012) ·Zbl 1241.57041 ·doi:10.4171/QT/26 |
[81] | Witten, Edward, Two lectures on the {J}ones polynomial and {K}hovanov homology, Lectures on {G}eometry, Clay Lect. Notes, 1-27, (2017), Oxford University Press, Oxford ·Zbl 1393.57004 |
[82] | Zagier, Don, Holomorphic quantum modular forms |
[83] | Zagier, Don, Vassiliev invariants and a strange identity related to the {D}edekind eta-function, Topology. An International Journal of Mathematics, 40, 5, 945-960, (2001) ·Zbl 0989.57009 ·doi:10.1016/S0040-9383(00)00005-7 |
[84] | Zagier, Don, The dilogarithm function, Frontiers in {N}umber {T}heory, {P}hysics, and {G}eometry. {II}, 3-65, (2007), Springer, Berlin ·Zbl 1176.11026 ·doi:10.1007/978-3-540-30308-4_1 |
[85] | Zagier, Don, Quantum modular forms, Quanta of {M}aths, Clay Math. Proc., 11, 659-675, (2010), American Mathematical Society, Providence, RI ·Zbl 1294.11084 |
[86] | Zagier, Don and Gangl, Herbert, Classical and elliptic polylogarithms and special values of {\(L\)}-series, The Arithmetic and Geometry of Algebraic Cycles ({B}anff, {AB}, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, 561-615, (2000), Kluwer, Dordrecht ·Zbl 0990.11041 ·doi:10.1007/978-94-011-4098-0_21 |
[87] | Zickert, Christian K., The volume and {C}hern–{S}imons invariant of a representation, Duke Mathematical Journal, 150, 3, 489-532, (2009) ·Zbl 1246.58019 ·doi:10.1215/00127094-2009-058 |
[88] | Zickert, Christian K., The extended {B}loch group and algebraic {\(K\)}-theory, Journal f\"ur die Reine und Angewandte Mathematik. [Crelle’s Journal], 704, 21-54, (2015) ·Zbl 1334.19004 ·doi:10.1515/crelle-2013-0055 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.