Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Explicit forms and proofs of Zagier’s rank three examples for Nahm’s problem.(English)Zbl 07872171

Recall the usual \(q\)-series notation, \[(a;q)_n = \prod_{j=0}^{n-1} (1-aq^j) \]and \[(a;q)_{\infty} = \prod_{j \geq 0} (1-aq^j). \]A general problem is to determine when the \(q\)-series \[f_{A,B,C}(q) = \sum_{n = (n_1,\dots , n_r)^T \in (\mathbb{Z}_{\geq 0})^r} \frac{q^{\frac{1}{2}n^TAn + Bn + C}}{(q;q)_{n_1} \cdots (q;q)_{n_r}} \]is a modular form. Here \(A\) is a matrix, \(B\) is a vector, and \(C\) is a scalar. Nahm’s problem refers to the case where \(A\) is positive definite.
When \(r=3\),D. Zagier [Frontiers in number theory, physics, and geometry II. On conformal field theories, discrete groups and renormalization. Papers from the meeting, Les Houches, France, March 9–21, 2003. Berlin: Springer. 3–65 (2007;Zbl 1176.11026)] gave a list of twelve positive-definite or positive semi-definite matrices \(A\) along with several \(B\) and \(C\) for each matrix and conjectured that the corresponding series \(f_{A,B,C}(q)\) are modular. He proved his conjecture for three of the matrices \(A\). In this paper the author establishes the remaining cases. This amounts to proving explicit identities like \[\sum_{i,j,k \geq 0} \frac{q^{i^2+j^2+k^2 + ij+ik+i+j}}{(q;q)_i(q;q)_j(q;q)_k} = \frac{(q^4;q^4)_{\infty}^2}{(q;q)_{\infty}(q^2;q^2)_{\infty}}\]or \[\sum_{i,j,k \geq 0} \frac{q^{4i^2+2j^2+k^2 +4ij-2ik-2jk + 4i+2j}}{(q^2;q^2)_i(q^2;q^2)_j(q^2;q^2)_k} = \frac{(q^2;q^2)_{\infty}^3(q;q^{12})_{\infty}(q^{11};q^{12})_{\infty}(q^{12};q^{12})_{\infty}}{(q;q)_{\infty}^2(q^4;q^4)_{\infty}},\]where the modularity of the infinite products is well known. Most of the identities are proved by reducing the triple sum to a more tractable single or double sum.

MSC:

11P84 Partition identities; identities of Rogers-Ramanujan type
11F03 Modular and automorphic functions
33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
33D60 Basic hypergeometric integrals and functions defined by them

Citations:

Zbl 1176.11026

Cite

References:

[1]Andrews, G. E., On the General Rogers-Ramanujan Theorem, 1974, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 0296.10010
[2]Andrews, G. E., Problem 74-12, SIAM Rev., 16, 390, 1974
[3]Andrews, G. E., Multiple q-series identities, Houst. J. Math., 3, 1-13, 1981
[4]Andrews, G. E., q-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, (CBMS Regional Conference Series in Mathematics, vol. 66, 1986, Amer. Math. Soc: Amer. Math. Soc Providence, RI) ·Zbl 0594.33001
[5]Andrews, G. E., Multiple series Rogers-Ramanujan type identities, Pac. J. Math., 114, 267-283, 1984 ·Zbl 0547.10012
[6]Andrews, G. E., The Theory of Partitions, 1998, Addison-Wesley: Reissued: Addison-Wesley: Reissued Cambridge, Reissued ·Zbl 0996.11002
[7]Andrews, G. E.; Berndt, B. C., Ramanujan’s Lost Notebook, Part II, 2009, Springer ·Zbl 1180.11001
[8]Andrews, G. E.; Schilling, A.; Warnaar, S. O., An \(A_2\) Bailey lemma and Rogers-Ramanujan-type identities, J. Am. Math. Soc., 12, 3, 677-702, 1999 ·Zbl 0917.05010
[9]Andrews, G. E.; Uncu, A. K., Sequences in overpartitions, Ramanujan J., 61, 715-729, 2023 ·Zbl 1547.11117
[10]Bowman, D.; Mc Laughlin, J.; Sills, A. V., Some more identities of Rogers-Ramanujan type, Ramanujan J., 18, 3, 307-325, 2009 ·Zbl 1196.11141
[11]Bressoud, D. M., A generalization of the Rogers-Ramanujan identities for all moduli, J. Comb. Theory, Ser. A, 27, 64-68, 1979 ·Zbl 0416.10009
[12]Bressoud, D. M., Some identities for terminating q-series, Math. Proc. Camb. Philos. Soc., 81, 211-223, 1981 ·Zbl 0454.33003
[13]Calinescu, C.; Milas, A.; Penn, M., Vertex algebraic structure of principal subspaces of basic \(A_{2 n}^{( 2 )}\)-modules, J. Pure Appl. Algebra, 220, 1752-1784, 2016 ·Zbl 1395.17059
[14]Cao, Z.; Rosengren, H.; Wang, L., On some double Nahm sums of Zagier, J. Comb. Theory, Ser. A, 202, Article 105819 pp., 2024 ·Zbl 1531.05016
[15]Cao, Z.; Wang, L., Multi-sum Rogers-Ramanujan type identities, J. Math. Anal. Appl., 522, 2, Article 126960 pp., 2023 ·Zbl 1516.05011
[16]Cherednik, I.; Feigin, B., Rogers-Ramanujan type identities and Nil-DAHA, Adv. Math., 248, 1050-1088, 2013 ·Zbl 1298.33029
[17]Chern, S., Asymmetric Rogers-Ramanujan type identities. I, The Andrews-Uncu conjecture, Proc. Am. Math. Soc., 151, 3269-3279, 2023 ·Zbl 1523.11188
[18]Dousse, J.; Lovejoy, J., Generalizations of Capparelli’s identity, Bull. Lond. Math. Soc., 51, 193-206, 2019 ·Zbl 1430.11144
[19]Dyson, F. J., Three identities in combinatory analysis, J. Lond. Math. Soc., 18, 35-39, 1943 ·Zbl 0028.33709
[20]Frye, J.; Garvan, F. G., Automatic proof of theta-function identities, elliptic integrals, elliptic functions and modular forms in quantum field theory, (Texts Monogr. Symbol. Comput., 2019, Springer: Springer Cham), 195-258
[21]Garoufalidis, S.; Zagier, D., Knots, perturbative series and quantum modularity ·Zbl 07897506
[22]Gasper, G.; Rahman, M., Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, vol. 96, 2004, Cambridge University Press ·Zbl 1129.33005
[23]Gordon, B., A combinatorial generalization of the Rogers-Ramanujan identities, Am. J. Math., 83, 393-399, 1961 ·Zbl 0100.27303
[24]Hardy, G. H., Lectures by Godfrey H. Hardy on the mathematical work of Ramanujan, (1937, Edwards Brothers: Edwards Brothers Ann Arbor, Michigan), Fall Term 1936. Notes taken by Marshall Hall at the Institute for Advanced Study, Princeton, NJ
[25]Kanade, S.; Russell, M. C., IdentityFinder and some new identities of Rogers-Ramanujan type, Exp. Math., 24, 4, 419-423, 2015 ·Zbl 1327.11075
[26]Kanade, S.; Russell, M. C., Staircases to analytic sum-sides for many new integer partition identities of Rogers-Ramanujan type, Electron. J. Comb., 26, 1-6, 2019 ·Zbl 1409.05018
[27]Li, H.; Milas, A., Jet schemes, quantum dilogarithm and Feigin-Stoyanovsky’s principal subspaces, J. Algebra, 640, 21-58, 2024 ·Zbl 1539.17030
[28]Mc Laughlin, J., Some more identities of Kanade-Russell type derived using Rosengren’s method, Ann. Comb., 27, 329-352, 2023 ·Zbl 1530.33017
[29]Mc Laughlin, J.; Sills, A. V.; Zimmer, P., Rogers-Ramanujan computer searches, J. Symb. Comput., 44, 8, 1068-1078, 2009 ·Zbl 1175.33018
[30]Lee, C.-H., Algebraic structures in modular q-hypergeometric series, 2012, University of California: University of California Berkeley, PhD Thesis
[31]Nahm, W., Conformal field theory and the dilogarithm, (11th International Conference on Mathematical Physics (ICMP-11) (Satelite Colloquia: New Problems in General Theory of Fields and Particles). 11th International Conference on Mathematical Physics (ICMP-11) (Satelite Colloquia: New Problems in General Theory of Fields and Particles), Paris, 1994), 662-667 ·Zbl 1052.81611
[32]Nahm, W., Conformal field theory, dilogarithms and three dimensional manifold, (Nahm, W.; Shen, J.-M., Interface Between Physics and Mathematics (Proceedings, Conference in Hangzhou, People’s Republic of China, September 1993), 1994, World Scientific: World Scientific Singapore), 154-165
[33]Nahm, W., Conformal field theory and torsion elements of the Bloch group, (Frontiers in Number Theory, Physics and Geometry, II, 2007, Springer), 67-132 ·Zbl 1193.81092
[34]Paule, P., Short and easy computer proofs of the Rogers-Ramanujan identities and identities of similar type, Electron. J. Comb., 1, 1994, 9 pp., #R10 ·Zbl 0814.05009
[35]Rogers, L. J., Second memoir on the expansion of certain infinite products, Proc. Lond. Math. Soc., 25, 318-343, 1894
[36]Rogers, L. J., On two theorems of combinatory analysis and some allied identities, Proc. Lond. Math. Soc., 16, 315-336, 1917 ·JFM 46.0109.01
[37]Rosengren, H., Proofs of some partition identities conjectured by Kanade and Russell, Ramanujan J., 61, 295-317, 2023 ·Zbl 1523.11189
[38]Schur, I., Ein Beitrag zur additiven Zahlentheorie und zur Theorie der kettenbrüche, S.-B. Preuss. Akad. Wiss. Phys. Math. Kl., 302-321, 1917 ·JFM 46.1448.02
[39]Selberg, A., Über einige arithmetische Identitäten, Avh. Norske Vid.-Akad. Oslo I, 8, 1-23, 1936 ·JFM 62.1068.04
[40]Sills, A. V., An Invitation to the Rogers-Ramanujan Identities, 2018, CRC Press ·Zbl 1429.11002
[41]Slater, L. J., Further identities of the Rogers-Ramanujan type, Proc. Lond. Math. Soc. (2), 54, 1, 147-167, 1952 ·Zbl 0046.27204
[42]Stanton, D., The Bailey-Rogers-Ramanujan group, (Berndt, B. C.; Ono, K., q-Series, with Applications to Combinatorics, Number Theory, and Physics, Contemp. Math., vol. 291, 2001, American Mathematical Society: American Mathematical Society Providence, RI), 55-70 ·Zbl 1009.33016
[43]Terhoeven, M., Rationale konforme Feldtheorien, der Dilogarithmus und Invarianten von 3-Mannigfaltigkeiten, 1995, Universitat: Universitat Bonn, PhD Thesis
[44]Vlasenko, M.; Zwegers, S., Nahm’s conjecture: asymptotic computations and counterexamples, Commun. Number Theory Phys., 5, 3, 617-642, 2011 ·Zbl 1256.81102
[45]Wang, L., New proofs of some double sum Rogers-Ramanujan type identities, Ramanujan J., 62, 251-272, 2023 ·Zbl 07739356
[46]Wang, L., Identities on Zagier’s rank two examples for Nahm’s problem ·Zbl 07875607
[47]Warnaar, S. O., 50 years of Bailey’s lemma, (Betten, A.; Kohnert, A.; Laue, R.; Wassermann, A., Algebraic Combinatorics and Applications, 2001, Springer: Springer Berlin, Heidelberg) ·Zbl 0972.11003
[48]Zagier, D., The dilogarithm function, (Frontiers in Number Theory, Physics and Geometry, II, 2007, Springer), 3-65 ·Zbl 1176.11026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp