[1] | Andrews, G. E., On the General Rogers-Ramanujan Theorem, 1974, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 0296.10010 |
[2] | Andrews, G. E., Problem 74-12, SIAM Rev., 16, 390, 1974 |
[3] | Andrews, G. E., Multiple q-series identities, Houst. J. Math., 3, 1-13, 1981 |
[4] | Andrews, G. E., q-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, (CBMS Regional Conference Series in Mathematics, vol. 66, 1986, Amer. Math. Soc: Amer. Math. Soc Providence, RI) ·Zbl 0594.33001 |
[5] | Andrews, G. E., Multiple series Rogers-Ramanujan type identities, Pac. J. Math., 114, 267-283, 1984 ·Zbl 0547.10012 |
[6] | Andrews, G. E., The Theory of Partitions, 1998, Addison-Wesley: Reissued: Addison-Wesley: Reissued Cambridge, Reissued ·Zbl 0996.11002 |
[7] | Andrews, G. E.; Berndt, B. C., Ramanujan’s Lost Notebook, Part II, 2009, Springer ·Zbl 1180.11001 |
[8] | Andrews, G. E.; Schilling, A.; Warnaar, S. O., An \(A_2\) Bailey lemma and Rogers-Ramanujan-type identities, J. Am. Math. Soc., 12, 3, 677-702, 1999 ·Zbl 0917.05010 |
[9] | Andrews, G. E.; Uncu, A. K., Sequences in overpartitions, Ramanujan J., 61, 715-729, 2023 ·Zbl 1547.11117 |
[10] | Bowman, D.; Mc Laughlin, J.; Sills, A. V., Some more identities of Rogers-Ramanujan type, Ramanujan J., 18, 3, 307-325, 2009 ·Zbl 1196.11141 |
[11] | Bressoud, D. M., A generalization of the Rogers-Ramanujan identities for all moduli, J. Comb. Theory, Ser. A, 27, 64-68, 1979 ·Zbl 0416.10009 |
[12] | Bressoud, D. M., Some identities for terminating q-series, Math. Proc. Camb. Philos. Soc., 81, 211-223, 1981 ·Zbl 0454.33003 |
[13] | Calinescu, C.; Milas, A.; Penn, M., Vertex algebraic structure of principal subspaces of basic \(A_{2 n}^{( 2 )}\)-modules, J. Pure Appl. Algebra, 220, 1752-1784, 2016 ·Zbl 1395.17059 |
[14] | Cao, Z.; Rosengren, H.; Wang, L., On some double Nahm sums of Zagier, J. Comb. Theory, Ser. A, 202, Article 105819 pp., 2024 ·Zbl 1531.05016 |
[15] | Cao, Z.; Wang, L., Multi-sum Rogers-Ramanujan type identities, J. Math. Anal. Appl., 522, 2, Article 126960 pp., 2023 ·Zbl 1516.05011 |
[16] | Cherednik, I.; Feigin, B., Rogers-Ramanujan type identities and Nil-DAHA, Adv. Math., 248, 1050-1088, 2013 ·Zbl 1298.33029 |
[17] | Chern, S., Asymmetric Rogers-Ramanujan type identities. I, The Andrews-Uncu conjecture, Proc. Am. Math. Soc., 151, 3269-3279, 2023 ·Zbl 1523.11188 |
[18] | Dousse, J.; Lovejoy, J., Generalizations of Capparelli’s identity, Bull. Lond. Math. Soc., 51, 193-206, 2019 ·Zbl 1430.11144 |
[19] | Dyson, F. J., Three identities in combinatory analysis, J. Lond. Math. Soc., 18, 35-39, 1943 ·Zbl 0028.33709 |
[20] | Frye, J.; Garvan, F. G., Automatic proof of theta-function identities, elliptic integrals, elliptic functions and modular forms in quantum field theory, (Texts Monogr. Symbol. Comput., 2019, Springer: Springer Cham), 195-258 |
[21] | Garoufalidis, S.; Zagier, D., Knots, perturbative series and quantum modularity ·Zbl 07897506 |
[22] | Gasper, G.; Rahman, M., Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, vol. 96, 2004, Cambridge University Press ·Zbl 1129.33005 |
[23] | Gordon, B., A combinatorial generalization of the Rogers-Ramanujan identities, Am. J. Math., 83, 393-399, 1961 ·Zbl 0100.27303 |
[24] | Hardy, G. H., Lectures by Godfrey H. Hardy on the mathematical work of Ramanujan, (1937, Edwards Brothers: Edwards Brothers Ann Arbor, Michigan), Fall Term 1936. Notes taken by Marshall Hall at the Institute for Advanced Study, Princeton, NJ |
[25] | Kanade, S.; Russell, M. C., IdentityFinder and some new identities of Rogers-Ramanujan type, Exp. Math., 24, 4, 419-423, 2015 ·Zbl 1327.11075 |
[26] | Kanade, S.; Russell, M. C., Staircases to analytic sum-sides for many new integer partition identities of Rogers-Ramanujan type, Electron. J. Comb., 26, 1-6, 2019 ·Zbl 1409.05018 |
[27] | Li, H.; Milas, A., Jet schemes, quantum dilogarithm and Feigin-Stoyanovsky’s principal subspaces, J. Algebra, 640, 21-58, 2024 ·Zbl 1539.17030 |
[28] | Mc Laughlin, J., Some more identities of Kanade-Russell type derived using Rosengren’s method, Ann. Comb., 27, 329-352, 2023 ·Zbl 1530.33017 |
[29] | Mc Laughlin, J.; Sills, A. V.; Zimmer, P., Rogers-Ramanujan computer searches, J. Symb. Comput., 44, 8, 1068-1078, 2009 ·Zbl 1175.33018 |
[30] | Lee, C.-H., Algebraic structures in modular q-hypergeometric series, 2012, University of California: University of California Berkeley, PhD Thesis |
[31] | Nahm, W., Conformal field theory and the dilogarithm, (11th International Conference on Mathematical Physics (ICMP-11) (Satelite Colloquia: New Problems in General Theory of Fields and Particles). 11th International Conference on Mathematical Physics (ICMP-11) (Satelite Colloquia: New Problems in General Theory of Fields and Particles), Paris, 1994), 662-667 ·Zbl 1052.81611 |
[32] | Nahm, W., Conformal field theory, dilogarithms and three dimensional manifold, (Nahm, W.; Shen, J.-M., Interface Between Physics and Mathematics (Proceedings, Conference in Hangzhou, People’s Republic of China, September 1993), 1994, World Scientific: World Scientific Singapore), 154-165 |
[33] | Nahm, W., Conformal field theory and torsion elements of the Bloch group, (Frontiers in Number Theory, Physics and Geometry, II, 2007, Springer), 67-132 ·Zbl 1193.81092 |
[34] | Paule, P., Short and easy computer proofs of the Rogers-Ramanujan identities and identities of similar type, Electron. J. Comb., 1, 1994, 9 pp., #R10 ·Zbl 0814.05009 |
[35] | Rogers, L. J., Second memoir on the expansion of certain infinite products, Proc. Lond. Math. Soc., 25, 318-343, 1894 |
[36] | Rogers, L. J., On two theorems of combinatory analysis and some allied identities, Proc. Lond. Math. Soc., 16, 315-336, 1917 ·JFM 46.0109.01 |
[37] | Rosengren, H., Proofs of some partition identities conjectured by Kanade and Russell, Ramanujan J., 61, 295-317, 2023 ·Zbl 1523.11189 |
[38] | Schur, I., Ein Beitrag zur additiven Zahlentheorie und zur Theorie der kettenbrüche, S.-B. Preuss. Akad. Wiss. Phys. Math. Kl., 302-321, 1917 ·JFM 46.1448.02 |
[39] | Selberg, A., Über einige arithmetische Identitäten, Avh. Norske Vid.-Akad. Oslo I, 8, 1-23, 1936 ·JFM 62.1068.04 |
[40] | Sills, A. V., An Invitation to the Rogers-Ramanujan Identities, 2018, CRC Press ·Zbl 1429.11002 |
[41] | Slater, L. J., Further identities of the Rogers-Ramanujan type, Proc. Lond. Math. Soc. (2), 54, 1, 147-167, 1952 ·Zbl 0046.27204 |
[42] | Stanton, D., The Bailey-Rogers-Ramanujan group, (Berndt, B. C.; Ono, K., q-Series, with Applications to Combinatorics, Number Theory, and Physics, Contemp. Math., vol. 291, 2001, American Mathematical Society: American Mathematical Society Providence, RI), 55-70 ·Zbl 1009.33016 |
[43] | Terhoeven, M., Rationale konforme Feldtheorien, der Dilogarithmus und Invarianten von 3-Mannigfaltigkeiten, 1995, Universitat: Universitat Bonn, PhD Thesis |
[44] | Vlasenko, M.; Zwegers, S., Nahm’s conjecture: asymptotic computations and counterexamples, Commun. Number Theory Phys., 5, 3, 617-642, 2011 ·Zbl 1256.81102 |
[45] | Wang, L., New proofs of some double sum Rogers-Ramanujan type identities, Ramanujan J., 62, 251-272, 2023 ·Zbl 07739356 |
[46] | Wang, L., Identities on Zagier’s rank two examples for Nahm’s problem ·Zbl 07875607 |
[47] | Warnaar, S. O., 50 years of Bailey’s lemma, (Betten, A.; Kohnert, A.; Laue, R.; Wassermann, A., Algebraic Combinatorics and Applications, 2001, Springer: Springer Berlin, Heidelberg) ·Zbl 0972.11003 |
[48] | Zagier, D., The dilogarithm function, (Frontiers in Number Theory, Physics and Geometry, II, 2007, Springer), 3-65 ·Zbl 1176.11026 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.