[1] | Bárány, B.; Hochman, M.; Rapaport, A., Hausdorff dimension of planar self-affine sets and measures, Invent. Math., 216, 3, 601-659, 2019 ·Zbl 1414.28014 |
[2] | Bárány, B.; Käenmäki, A., Ledrappier-Young formula and exact dimensionality of self-affine measures, Adv. Math., 318, 88-129, 2017 ·Zbl 1457.37032 |
[3] | Benoist, Y.; Quint, J.-F., Random Walks on Reductive Groups, 2016, Springer International Publishing ·Zbl 1376.20050 |
[4] | Bougerol, P.; Lacroix, J., Products of Random Matrices with Applications to Schrödinger Operators, Progress in Probability and Statistics, vol. 8, 1985, Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA ·Zbl 0572.60001 |
[5] | Cheeger, J.; Ebin, D. G., Comparison Theorems in Riemannian Geometry, 2008, AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI, Revised reprint of the 1975 original ·Zbl 1142.53003 |
[6] | do Carmo, M. P., Riemannian Geometry, Mathematics: Theory & Applications, 1992, Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA, Translated from the second Portuguese edition by Francis Flaherty ·Zbl 0752.53001 |
[7] | Edgar, G. A., Integral, Probability, and Fractal Measures, 1998, Springer-Verlag: Springer-Verlag New York ·Zbl 0893.28001 |
[8] | Einsiedler, M.; Ward, T., Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, vol. 259, 2011, Springer-Verlag London, Ltd.: Springer-Verlag London, Ltd. London ·Zbl 1206.37001 |
[9] | Falconer, K. J., The Hausdorff dimension of self-affine fractals, Math. Proc. Camb. Philos. Soc., 103, 2, 339-350, 1988 ·Zbl 0642.28005 |
[10] | Falconer, K. J.; Fraser, J.; Jin, X., Sixty years of fractal projections, (Fractal Geometry and Stochastics V. Fractal Geometry and Stochastics V, Progr. Probab., vol. 70, 2015, Birkhäuser/Springer: Birkhäuser/Springer Cham), 3-25 ·Zbl 1338.28007 |
[11] | Falconer, K. J.; Kempton, T., The dimension of projections of self-affine sets and measures, Ann. Acad. Sci. Fenn., Math., 42, 1, 473-486, 2017 ·Zbl 1365.28006 |
[12] | Fan, A.-H.; Lau, K.-S.; Rao, H., Relationships between different dimensions of a measure, Monatshefte Math., 135, 3, 191-201, 2002 ·Zbl 0996.28001 |
[13] | Feng, D.-J., Dimension of invariant measures for affine iterated function systems, Duke Math. J., 172, 4, 701-774, 2019 ·Zbl 07684350 |
[14] | Guivarc’h, Y., Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergod. Theory Dyn. Syst., 10, 3, 483-512, 1990 ·Zbl 0715.60008 |
[15] | Hochman, M., On self-similar sets with overlaps and inverse theorems for entropy, Ann. Math. (2), 180, 2, 773-822, 2014 ·Zbl 1337.28015 |
[16] | Hochman, M., On self-similar sets with overlaps and inverse theorems for entropy in \(\mathbb{R}^d\), Mem. Am. Math. Soc., 2015, in press |
[17] | Hochman, M.; Rapaport, A., Hausdorff dimension of planar self-affine sets and measures with overlaps, J. Eur. Math. Soc., 24, 7, 2361-2441, 2022 ·Zbl 1502.28005 |
[18] | Hochman, M.; Shmerkin, P., Local entropy averages and projections of fractal measures, Ann. Math. (2), 175, 3, 1001-1059, 2012 ·Zbl 1251.28008 |
[19] | Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J., 30, 5, 713-747, 1981 ·Zbl 0598.28011 |
[20] | Jordan, T.; Pollicott, M.; Simon, K., Hausdorff dimension for randomly perturbed self affine attractors, Commun. Math. Phys., 270, 2, 519-544, 2007 ·Zbl 1119.28004 |
[21] | Käenmäki, A.; Rajala, T.; Suomala, V., Existence of doubling measures via generalised nested cubes, Proc. Am. Math. Soc., 140, 9, 3275-3281, 2012 ·Zbl 1277.28017 |
[22] | Lee, J. M., Introduction to Smooth Manifolds, Graduate Texts in Mathematics, vol. 218, 2013, Springer: Springer New York ·Zbl 1258.53002 |
[23] | I.D. Morris, C. Sert, Personal communication, 2022. |
[24] | Morris, I. D.; Shmerkin, P., On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems, Trans. Am. Math. Soc., 371, 3, 1547-1582, 2019 ·Zbl 1406.28005 |
[25] | Parry, W., Topics in Ergodic Theory, Cambridge Tracts in Mathematics, vol. 75, 1981, Cambridge University Press: Cambridge University Press Cambridge-New York ·Zbl 0449.28016 |
[26] | Petersen, P., Riemannian Geometry, Graduate Texts in Mathematics, vol. 171, 2006, Springer: Springer New York ·Zbl 1220.53002 |
[27] | Rapaport, A., On self-affine measures with equal Hausdorff and Lyapunov dimensions, Trans. Am. Math. Soc., 370, 7, 4759-4783, 2018 ·Zbl 1386.37021 |
[28] | Rapaport, A., On the Rajchman property for self-similar measures on \(\mathbb{R}^d\), Adv. Math., 403, Article 108375 pp., 2022, 53 ·Zbl 1503.28011 |
[29] | Ruelle, D., Ergodic theory of differentiable dynamical systems, Publ. Math. Inst. Hautes Études Sci., 50, 27-58, 1979 ·Zbl 0426.58014 |
[30] | Shmerkin, P., Projections of self-similar and related fractals: a survey of recent developments, (Fractal Geometry and Stochastics V. Fractal Geometry and Stochastics V, Progr. Probab., vol. 70, 2015, Birkhäuser/Springer: Birkhäuser/Springer Cham), 53-74 ·Zbl 1338.28004 |
[31] | Solomyak, B., Measure and dimension for some fractal families, Math. Proc. Camb. Philos. Soc., 124, 3, 531-546, 1998 ·Zbl 0927.28006 |
[32] | Whitney, H., Elementary structure of real algebraic varieties, Ann. Math. (2), 66, 545-556, 1957 ·Zbl 0078.13403 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.