Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On self-affine measures associated to strongly irreducible and proximal systems.(English)Zbl 07863031

Summary: Let \(\mu\) be a self-affine measure on \(\mathbb{R}^d\) associated to an affine IFS \(\Phi\) and a positive probability vector \(p\). Suppose that the maps in \(\Phi\) do not have a common fixed point, and that standard irreducibility and proximality assumptions are satisfied by their linear parts. We show that \(\dim \mu\) is equal to the Lyapunov dimension \(\dim_L (\Phi, p)\) whenever \(d = 3\) and \(\Phi\) satisfies the strong separation condition (or the milder strong open set condition). This follows from a general criteria ensuring \(\dim \mu = \min \{d, \dim_L (\Phi, p)\}\), from which earlier results in the planar case also follow. Additionally, we prove that \(\dim \mu = d\) whenever \(\Phi\) is Diophantine (which holds e.g. when \(\Phi\) is defined by algebraic parameters) and the entropy of the random walk generated by \(\Phi\) and \(p\) is at least \((\chi_1 - \chi_d) \frac{(d - 1) (d - 2)}{2} - \sum_{k = 1}^d \chi_k\), where \(0 > \chi_1 \geq \ldots \geq \chi_d\) are the Lyapunov exponents. We also obtain results regarding the dimension of orthogonal projections of \(\mu\).

MSC:

28A80 Fractals
37C45 Dimension theory of smooth dynamical systems

Cite

References:

[1]Bárány, B.; Hochman, M.; Rapaport, A., Hausdorff dimension of planar self-affine sets and measures, Invent. Math., 216, 3, 601-659, 2019 ·Zbl 1414.28014
[2]Bárány, B.; Käenmäki, A., Ledrappier-Young formula and exact dimensionality of self-affine measures, Adv. Math., 318, 88-129, 2017 ·Zbl 1457.37032
[3]Benoist, Y.; Quint, J.-F., Random Walks on Reductive Groups, 2016, Springer International Publishing ·Zbl 1376.20050
[4]Bougerol, P.; Lacroix, J., Products of Random Matrices with Applications to Schrödinger Operators, Progress in Probability and Statistics, vol. 8, 1985, Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA ·Zbl 0572.60001
[5]Cheeger, J.; Ebin, D. G., Comparison Theorems in Riemannian Geometry, 2008, AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI, Revised reprint of the 1975 original ·Zbl 1142.53003
[6]do Carmo, M. P., Riemannian Geometry, Mathematics: Theory & Applications, 1992, Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA, Translated from the second Portuguese edition by Francis Flaherty ·Zbl 0752.53001
[7]Edgar, G. A., Integral, Probability, and Fractal Measures, 1998, Springer-Verlag: Springer-Verlag New York ·Zbl 0893.28001
[8]Einsiedler, M.; Ward, T., Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, vol. 259, 2011, Springer-Verlag London, Ltd.: Springer-Verlag London, Ltd. London ·Zbl 1206.37001
[9]Falconer, K. J., The Hausdorff dimension of self-affine fractals, Math. Proc. Camb. Philos. Soc., 103, 2, 339-350, 1988 ·Zbl 0642.28005
[10]Falconer, K. J.; Fraser, J.; Jin, X., Sixty years of fractal projections, (Fractal Geometry and Stochastics V. Fractal Geometry and Stochastics V, Progr. Probab., vol. 70, 2015, Birkhäuser/Springer: Birkhäuser/Springer Cham), 3-25 ·Zbl 1338.28007
[11]Falconer, K. J.; Kempton, T., The dimension of projections of self-affine sets and measures, Ann. Acad. Sci. Fenn., Math., 42, 1, 473-486, 2017 ·Zbl 1365.28006
[12]Fan, A.-H.; Lau, K.-S.; Rao, H., Relationships between different dimensions of a measure, Monatshefte Math., 135, 3, 191-201, 2002 ·Zbl 0996.28001
[13]Feng, D.-J., Dimension of invariant measures for affine iterated function systems, Duke Math. J., 172, 4, 701-774, 2019 ·Zbl 07684350
[14]Guivarc’h, Y., Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergod. Theory Dyn. Syst., 10, 3, 483-512, 1990 ·Zbl 0715.60008
[15]Hochman, M., On self-similar sets with overlaps and inverse theorems for entropy, Ann. Math. (2), 180, 2, 773-822, 2014 ·Zbl 1337.28015
[16]Hochman, M., On self-similar sets with overlaps and inverse theorems for entropy in \(\mathbb{R}^d\), Mem. Am. Math. Soc., 2015, in press
[17]Hochman, M.; Rapaport, A., Hausdorff dimension of planar self-affine sets and measures with overlaps, J. Eur. Math. Soc., 24, 7, 2361-2441, 2022 ·Zbl 1502.28005
[18]Hochman, M.; Shmerkin, P., Local entropy averages and projections of fractal measures, Ann. Math. (2), 175, 3, 1001-1059, 2012 ·Zbl 1251.28008
[19]Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J., 30, 5, 713-747, 1981 ·Zbl 0598.28011
[20]Jordan, T.; Pollicott, M.; Simon, K., Hausdorff dimension for randomly perturbed self affine attractors, Commun. Math. Phys., 270, 2, 519-544, 2007 ·Zbl 1119.28004
[21]Käenmäki, A.; Rajala, T.; Suomala, V., Existence of doubling measures via generalised nested cubes, Proc. Am. Math. Soc., 140, 9, 3275-3281, 2012 ·Zbl 1277.28017
[22]Lee, J. M., Introduction to Smooth Manifolds, Graduate Texts in Mathematics, vol. 218, 2013, Springer: Springer New York ·Zbl 1258.53002
[23]I.D. Morris, C. Sert, Personal communication, 2022.
[24]Morris, I. D.; Shmerkin, P., On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems, Trans. Am. Math. Soc., 371, 3, 1547-1582, 2019 ·Zbl 1406.28005
[25]Parry, W., Topics in Ergodic Theory, Cambridge Tracts in Mathematics, vol. 75, 1981, Cambridge University Press: Cambridge University Press Cambridge-New York ·Zbl 0449.28016
[26]Petersen, P., Riemannian Geometry, Graduate Texts in Mathematics, vol. 171, 2006, Springer: Springer New York ·Zbl 1220.53002
[27]Rapaport, A., On self-affine measures with equal Hausdorff and Lyapunov dimensions, Trans. Am. Math. Soc., 370, 7, 4759-4783, 2018 ·Zbl 1386.37021
[28]Rapaport, A., On the Rajchman property for self-similar measures on \(\mathbb{R}^d\), Adv. Math., 403, Article 108375 pp., 2022, 53 ·Zbl 1503.28011
[29]Ruelle, D., Ergodic theory of differentiable dynamical systems, Publ. Math. Inst. Hautes Études Sci., 50, 27-58, 1979 ·Zbl 0426.58014
[30]Shmerkin, P., Projections of self-similar and related fractals: a survey of recent developments, (Fractal Geometry and Stochastics V. Fractal Geometry and Stochastics V, Progr. Probab., vol. 70, 2015, Birkhäuser/Springer: Birkhäuser/Springer Cham), 53-74 ·Zbl 1338.28004
[31]Solomyak, B., Measure and dimension for some fractal families, Math. Proc. Camb. Philos. Soc., 124, 3, 531-546, 1998 ·Zbl 0927.28006
[32]Whitney, H., Elementary structure of real algebraic varieties, Ann. Math. (2), 66, 545-556, 1957 ·Zbl 0078.13403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp