Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Augmentations, fillings, and clusters.(English)Zbl 07862380

Summary: We investigate positive braid Legendrian links via a Floer-theoretic approach and prove that their augmentation varieties are cluster \(K_{2}\) (aka. \(\mathcal{A}\)-) varieties. Using the exact Lagrangian cobordisms of Legendrian links in Ekholm et al. (J. Eur. Math. Soc. 18(11):2627-2689, 2016), we prove that a large family of exact Lagrangian fillings of positive braid Legendrian links correspond to cluster seeds of their augmentation varieties. We solve the infinite-filling problem for positive braid Legendrian links; i.e., whenever a positive braid Legendrian link is not of type ADE, it admits infinitely many exact Lagrangian fillings up to Hamiltonian isotopy.

MSC:

53D40 Symplectic aspects of Floer homology and cohomology
53D10 Contact manifolds (general theory)
53D12 Lagrangian submanifolds; Maslov index
13F60 Cluster algebras

Cite

References:

[1]Arnold, V. I., Local normal forms of functions, Invent. Math., 35, 87-109, 1976 ·Zbl 0336.57022 ·doi:10.1007/BF01390134
[2]Baader, S., Positive braids of maximal signature, Enseign. Math., 59, 3-4, 351-358, 2013 ·Zbl 1320.57005 ·doi:10.4171/LEM/59-3-8
[3]Berenstein, A.; Fomin, S.; Zelevinsky, A., Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., 126, 1, 1-52, 2005 ·Zbl 1135.16013 ·doi:10.1215/S0012-7094-04-12611-9
[4]Casals, R., Lagrangian skeleta and plane curve singularities, J. Fixed Point Theory Appl., 24, 2022 ·Zbl 1501.53088 ·doi:10.1007/s11784-022-00939-8
[5]Casals, R.; Gao, H., Infinitely many Lagrangian fillings, Ann. Math., 195, 1, 207-249, 2022 ·Zbl 1494.53090 ·doi:10.4007/annals.2022.195.1.3
[6]Baptiste, C., Lagrangian concordance of Legendrian knots, Algebraic Geom. Topol., 10, 1, 63-85, 2010 ·Zbl 1203.57010 ·doi:10.2140/agt.2010.10.63
[7]Baptiste, C., Lagrangian concordance is not a symmetric relation, Quantum Topol., 6, 3, 451-474, 2015 ·Zbl 1337.57056 ·doi:10.4171/QT/68
[8]Chekanov, Y., Differential algebra of Legendrian links, Invent. Math., 150, 3, 441-483, 2002 ·Zbl 1029.57011 ·doi:10.1007/s002220200212
[9]Casals, R.; Ng, L., Braid loops with infinite monodromy on the Legendrian contact DGA, J. Topol., 15, 4, 1-82, 2022 ·Zbl 1527.53080 ·doi:10.1112/topo.12264
[10]Casals, R.; Zaslow, E., Legendrian weaves: N-graph calculus, flag moduli and applications, Geom. Topol., 26, 8, 3589-3745, 2022 ·Zbl 1521.53061 ·doi:10.2140/gt.2022.26.3589
[11]Ekholm, T.; Etnyre, J.; Ng, L.; Sullivan, M., Knot contact homology, Geom. Topol., 17, 2, 975-1112, 2013 ·Zbl 1267.53095 ·doi:10.2140/gt.2013.17.975
[12]Eliashberg, Y.; Givental, A.; Hofer, H., Introduction to symplectic field theory, Visions in Mathematics, Special Volume, Part II, 560-673, 2000, Basel: Birkhäuser, Basel ·Zbl 0989.81114 ·doi:10.1007/978-3-0346-0425-3_4
[13]Ekholm, T.; Honda, K.; Kálmán, T., Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc., 18, 11, 2627-2689, 2016 ·Zbl 1357.57044 ·doi:10.4171/JEMS/650
[14]Ekholm, T., Morse flow trees and Legendrian contact homology in 1-jet spaces, Geom. Topol., 11, 1083-1224, 2007 ·Zbl 1162.53064 ·doi:10.2140/gt.2007.11.1083
[15]Ekholm, T.; Lekili, Y., Duality between Lagrangian and Legendrian invariants, Geom. Topol., 27, 6, 2049-2179, 2023 ·Zbl 1536.53166 ·doi:10.2140/gt.2023.27.2049
[16]Etnyre, J.; Ng, L., Legendrian contact homology in \(\mathbb{R}^3 \), Surv. Differ. Geom., 25, 103-161, 2020 ·Zbl 1517.57010 ·doi:10.4310/SDG.2020.v25.n1.a4
[17]Etnyre, J.; Ng, L.; Sabloff, J., Invariants of Legendrian knots and coherent orientations, J. Symplectic Geom., 1, 2, 321-367, 2002 ·Zbl 1024.57014 ·doi:10.4310/JSG.2001.v1.n2.a5
[18]Eliashberg, Y.; Polterovich, L., Local Lagrangian 2-knots are trivial, Ann. Math. (2), 144, 1, 61-76, 1996 ·Zbl 0872.57030 ·doi:10.2307/2118583
[19]Etnyre, J.; Vértesi, V., Legendrian satellites, Int. Math. Res. Not., 2018, 23, 7241-7304, 2018 ·Zbl 1426.57005 ·doi:10.1093/imrn/rnx106
[20]Fock, V.; Goncharov, A., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci., 103, 1-211, 2006 ·Zbl 1099.14025 ·doi:10.1007/s10240-006-0039-4
[21]Fock, V.; Goncharov, A., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4), 42, 6, 865-930, 2009 ·Zbl 1180.53081 ·doi:10.24033/asens.2112
[22]Fuchs, D.; Rutherford, D., Generating families and Legendrian contact homology in the standard contact space, J. Topol., 4, 1, 190-226, 2011 ·Zbl 1237.57026 ·doi:10.1112/jtopol/jtq033
[23]Fraser, C., Quasi-homomorphisms of cluster algebras, Adv. Appl. Math., 81, 40-77, 2016 ·Zbl 1375.13031 ·doi:10.1016/j.aam.2016.06.005
[24]Fuchs, D., Chekanov-Eliashberg invariant of Legendrian knots: existence of augmentations, J. Geom. Phys., 47, 1, 43-65, 2003 ·Zbl 1028.57005 ·doi:10.1016/S0393-0440(01)00013-4
[25]Fomin, S.; Zelevinsky, A., Cluster algebras. I. Foundations, J. Am. Math. Soc., 15, 2, 497-529, 2002 ·Zbl 1021.16017 ·doi:10.1090/S0894-0347-01-00385-X
[26]Fomin, S.; Zelevinsky, A., Cluster algebras. II. Finite type classification, Invent. Math., 154, 1, 63-121, 2003 ·Zbl 1054.17024 ·doi:10.1007/s00222-003-0302-y
[27]Fomin, S.; Zelevinsky, A., Cluster algebras. IV. Coefficients, Compos. Math., 143, 1, 112-164, 2007 ·Zbl 1127.16023 ·doi:10.1112/S0010437X06002521
[28]Gross, M.; Hacking, P.; Keel, S.; Kontsevich, M., Canonical bases for cluster algebras, J. Am. Math. Soc., 31, 2, 497-608, 2018 ·Zbl 1446.13015 ·doi:10.1090/jams/890
[29]Geiss, C.; Leclerc, B.; Schröer, J., Kac-Moody groups and cluster algebras, Adv. Math., 228, 1, 329-433, 2011 ·Zbl 1232.17035 ·doi:10.1016/j.aim.2011.05.011
[30]Ganatra, S.; Pardon, J.; Shende, V., Sectorial descent for wrapped Fukaya categories, J. Am. Math. Soc., 37, 2, 499-635, 2024 ·Zbl 1546.53081 ·doi:10.1090/jams/1035
[31]Gelfand, I. M.; Retakh, V. S., Determinants of matrices over noncommutative rings, Funkc. Anal. Prilozh., 25, 2, 13-25, 1991 ·Zbl 0748.15005 ·doi:10.1007/BF01079588
[32]Goncharov, A.; Shen, L., Donaldson-Thomas transformations of moduli spaces of G-local systems, Adv. Math., 327, 225-348, 2018 ·Zbl 1434.13022 ·doi:10.1016/j.aim.2017.06.017
[33]Goncharov, A., Shen, L.: Quantum geometry of moduli spaces of local systems and representation theory (2019). Preprint. arXiv:1904.10491
[34]Kálmán, T., Contact homology and one parameter families of Legendrian knots, Geom. Topol., 9, 2013-2078, 2005 ·Zbl 1095.53059 ·doi:10.2140/gt.2005.9.2013
[35]Kálmán, T., Braid-positive Legendrian links, Int. Math. Res. Not., 29, 2006 ·Zbl 1128.57006 ·doi:10.1155/IMRN/2006/14874
[36]Karlsson, C., A note on coherent orientations for exact Lagrangian cobordisms, Quantum Topol., 11, 1, 1-54, 2020 ·Zbl 1439.53071 ·doi:10.4171/QT/132
[37]Keller, B., The periodicity conjecture for pairs of Dynkin diagrams, Ann. Math. (2), 177, 1, 111-170, 2013 ·Zbl 1320.17007 ·doi:10.4007/annals.2013.177.1.3
[38]Keller, B.: Quiver mutation and combinatorial DT-invariants. Discrete Math. Theor. Comput. Sci. (2017). arXiv:1709.03143
[39]Kumar, S., Kac-Moody Groups, Their Flag Varieties and Representation Theory, 2002, Boston: Birkhäuser Boston, Inc., Boston ·Zbl 1026.17030 ·doi:10.1007/978-1-4612-0105-2
[40]Lee, K.; Li, L.; Mills, M.; Schiffler, R.; Seceleanu, A., Frieze varieties: a characterization of the finite-tame-wild trichotomy for acyclic quivers, Adv. Math., 367, 2020 ·Zbl 1445.16014 ·doi:10.1016/j.aim.2020.107130
[41]Lee, K.; Schiffler, R., Positivity for cluster algebras, Ann. Math. (2), 182, 1, 73-125, 2015 ·Zbl 1350.13024 ·doi:10.4007/annals.2015.182.1.2
[42]Nadler, D., Microlocal branes are constructible sheaves, Sel. Math. New Ser., 15, 4, 563-619, 2009 ·Zbl 1197.53116 ·doi:10.1007/s00029-009-0008-0
[43]Ng, L., Computable Legendrian invariants, Topology, 42, 1, 55-82, 2003 ·Zbl 1032.53070 ·doi:10.1016/S0040-9383(02)00010-1
[44]Ng, L.; Rutherford, D.; Shende, V.; Sivek, S.; Zaslow, E., Augmentations are sheaves, Geom. Topol., 24, 5, 2149-2286, 2020 ·Zbl 1457.53064 ·doi:10.2140/gt.2020.24.2149
[45]Nakanishi, T.; Zelevinsky, A., On tropical dualities in cluster algebras, Algebraic Groups and Quantum Groups, 217-226, 2012, Providence: Am. Math. Soc., Providence ·Zbl 1317.13054 ·doi:10.1090/conm/565/11159
[46]Pan, Y., Exact Lagrangian fillings of Legendrian (2,n) torus links, Pac. J. Math., 289, 2, 417-441, 2017 ·Zbl 1432.53127 ·doi:10.2140/pjm.2017.289.417
[47]Sabloff, J., Augmentations and rulings of Legendrian knots, Int. Math. Res. Not., 2005, 19, 1157-1180, 2005 ·Zbl 1082.57020 ·doi:10.1155/IMRN.2005.1157
[48]Shen, L., Stasheff polytopes and the coordinate ring of the cluster \(\mathcal{X} \)-variety of type A_n, Sel. Math. New Ser., 20, 3, 929-959, 2014 ·Zbl 1296.05210 ·doi:10.1007/s00029-013-0124-8
[49]Sivek, S., A bordered Chekanov-Eliashberg algebra, J. Topol., 4, 1, 73-104, 2011 ·Zbl 1219.57022 ·doi:10.1112/jtopol/jtq035
[50]Shende, V.; Treumann, D.; Williams, H.; Zaslow, E., Cluster varieties from Legendrian knots, Duke Math. J., 168, 15, 2801-2871, 2019 ·Zbl 1475.53094 ·doi:10.1215/00127094-2019-0027
[51]Shende, V.; Treumann, D.; Zaslow, E., Legendrian knots and constructible sheaves, Invent. Math., 207, 3, 1031-1133, 2017 ·Zbl 1369.57016 ·doi:10.1007/s00222-016-0681-5
[52]Shen, L.; Weng, D., Cluster structures on double Bott-Samelson cells, Forum Math. Sigma., 9, e66, 1-89, 2021 ·Zbl 1479.13028 ·doi:10.1017/fms.2021.59
[53]Sylvan, Z., On partially wrapped Fukaya categories, J. Topol., 12, 2, 372-441, 2019 ·Zbl 1430.53097 ·doi:10.1112/topo.12088
[54]Weng, D., Donaldson-Thomas transformation of Grassmannian, Adv. Math., 383, 2021 ·Zbl 1471.14118 ·doi:10.1016/j.aim.2021.107721
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp