[1] | Arnold, V. I., Local normal forms of functions, Invent. Math., 35, 87-109, 1976 ·Zbl 0336.57022 ·doi:10.1007/BF01390134 |
[2] | Baader, S., Positive braids of maximal signature, Enseign. Math., 59, 3-4, 351-358, 2013 ·Zbl 1320.57005 ·doi:10.4171/LEM/59-3-8 |
[3] | Berenstein, A.; Fomin, S.; Zelevinsky, A., Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., 126, 1, 1-52, 2005 ·Zbl 1135.16013 ·doi:10.1215/S0012-7094-04-12611-9 |
[4] | Casals, R., Lagrangian skeleta and plane curve singularities, J. Fixed Point Theory Appl., 24, 2022 ·Zbl 1501.53088 ·doi:10.1007/s11784-022-00939-8 |
[5] | Casals, R.; Gao, H., Infinitely many Lagrangian fillings, Ann. Math., 195, 1, 207-249, 2022 ·Zbl 1494.53090 ·doi:10.4007/annals.2022.195.1.3 |
[6] | Baptiste, C., Lagrangian concordance of Legendrian knots, Algebraic Geom. Topol., 10, 1, 63-85, 2010 ·Zbl 1203.57010 ·doi:10.2140/agt.2010.10.63 |
[7] | Baptiste, C., Lagrangian concordance is not a symmetric relation, Quantum Topol., 6, 3, 451-474, 2015 ·Zbl 1337.57056 ·doi:10.4171/QT/68 |
[8] | Chekanov, Y., Differential algebra of Legendrian links, Invent. Math., 150, 3, 441-483, 2002 ·Zbl 1029.57011 ·doi:10.1007/s002220200212 |
[9] | Casals, R.; Ng, L., Braid loops with infinite monodromy on the Legendrian contact DGA, J. Topol., 15, 4, 1-82, 2022 ·Zbl 1527.53080 ·doi:10.1112/topo.12264 |
[10] | Casals, R.; Zaslow, E., Legendrian weaves: N-graph calculus, flag moduli and applications, Geom. Topol., 26, 8, 3589-3745, 2022 ·Zbl 1521.53061 ·doi:10.2140/gt.2022.26.3589 |
[11] | Ekholm, T.; Etnyre, J.; Ng, L.; Sullivan, M., Knot contact homology, Geom. Topol., 17, 2, 975-1112, 2013 ·Zbl 1267.53095 ·doi:10.2140/gt.2013.17.975 |
[12] | Eliashberg, Y.; Givental, A.; Hofer, H., Introduction to symplectic field theory, Visions in Mathematics, Special Volume, Part II, 560-673, 2000, Basel: Birkhäuser, Basel ·Zbl 0989.81114 ·doi:10.1007/978-3-0346-0425-3_4 |
[13] | Ekholm, T.; Honda, K.; Kálmán, T., Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc., 18, 11, 2627-2689, 2016 ·Zbl 1357.57044 ·doi:10.4171/JEMS/650 |
[14] | Ekholm, T., Morse flow trees and Legendrian contact homology in 1-jet spaces, Geom. Topol., 11, 1083-1224, 2007 ·Zbl 1162.53064 ·doi:10.2140/gt.2007.11.1083 |
[15] | Ekholm, T.; Lekili, Y., Duality between Lagrangian and Legendrian invariants, Geom. Topol., 27, 6, 2049-2179, 2023 ·Zbl 1536.53166 ·doi:10.2140/gt.2023.27.2049 |
[16] | Etnyre, J.; Ng, L., Legendrian contact homology in \(\mathbb{R}^3 \), Surv. Differ. Geom., 25, 103-161, 2020 ·Zbl 1517.57010 ·doi:10.4310/SDG.2020.v25.n1.a4 |
[17] | Etnyre, J.; Ng, L.; Sabloff, J., Invariants of Legendrian knots and coherent orientations, J. Symplectic Geom., 1, 2, 321-367, 2002 ·Zbl 1024.57014 ·doi:10.4310/JSG.2001.v1.n2.a5 |
[18] | Eliashberg, Y.; Polterovich, L., Local Lagrangian 2-knots are trivial, Ann. Math. (2), 144, 1, 61-76, 1996 ·Zbl 0872.57030 ·doi:10.2307/2118583 |
[19] | Etnyre, J.; Vértesi, V., Legendrian satellites, Int. Math. Res. Not., 2018, 23, 7241-7304, 2018 ·Zbl 1426.57005 ·doi:10.1093/imrn/rnx106 |
[20] | Fock, V.; Goncharov, A., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci., 103, 1-211, 2006 ·Zbl 1099.14025 ·doi:10.1007/s10240-006-0039-4 |
[21] | Fock, V.; Goncharov, A., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4), 42, 6, 865-930, 2009 ·Zbl 1180.53081 ·doi:10.24033/asens.2112 |
[22] | Fuchs, D.; Rutherford, D., Generating families and Legendrian contact homology in the standard contact space, J. Topol., 4, 1, 190-226, 2011 ·Zbl 1237.57026 ·doi:10.1112/jtopol/jtq033 |
[23] | Fraser, C., Quasi-homomorphisms of cluster algebras, Adv. Appl. Math., 81, 40-77, 2016 ·Zbl 1375.13031 ·doi:10.1016/j.aam.2016.06.005 |
[24] | Fuchs, D., Chekanov-Eliashberg invariant of Legendrian knots: existence of augmentations, J. Geom. Phys., 47, 1, 43-65, 2003 ·Zbl 1028.57005 ·doi:10.1016/S0393-0440(01)00013-4 |
[25] | Fomin, S.; Zelevinsky, A., Cluster algebras. I. Foundations, J. Am. Math. Soc., 15, 2, 497-529, 2002 ·Zbl 1021.16017 ·doi:10.1090/S0894-0347-01-00385-X |
[26] | Fomin, S.; Zelevinsky, A., Cluster algebras. II. Finite type classification, Invent. Math., 154, 1, 63-121, 2003 ·Zbl 1054.17024 ·doi:10.1007/s00222-003-0302-y |
[27] | Fomin, S.; Zelevinsky, A., Cluster algebras. IV. Coefficients, Compos. Math., 143, 1, 112-164, 2007 ·Zbl 1127.16023 ·doi:10.1112/S0010437X06002521 |
[28] | Gross, M.; Hacking, P.; Keel, S.; Kontsevich, M., Canonical bases for cluster algebras, J. Am. Math. Soc., 31, 2, 497-608, 2018 ·Zbl 1446.13015 ·doi:10.1090/jams/890 |
[29] | Geiss, C.; Leclerc, B.; Schröer, J., Kac-Moody groups and cluster algebras, Adv. Math., 228, 1, 329-433, 2011 ·Zbl 1232.17035 ·doi:10.1016/j.aim.2011.05.011 |
[30] | Ganatra, S.; Pardon, J.; Shende, V., Sectorial descent for wrapped Fukaya categories, J. Am. Math. Soc., 37, 2, 499-635, 2024 ·Zbl 1546.53081 ·doi:10.1090/jams/1035 |
[31] | Gelfand, I. M.; Retakh, V. S., Determinants of matrices over noncommutative rings, Funkc. Anal. Prilozh., 25, 2, 13-25, 1991 ·Zbl 0748.15005 ·doi:10.1007/BF01079588 |
[32] | Goncharov, A.; Shen, L., Donaldson-Thomas transformations of moduli spaces of G-local systems, Adv. Math., 327, 225-348, 2018 ·Zbl 1434.13022 ·doi:10.1016/j.aim.2017.06.017 |
[33] | Goncharov, A., Shen, L.: Quantum geometry of moduli spaces of local systems and representation theory (2019). Preprint. arXiv:1904.10491 |
[34] | Kálmán, T., Contact homology and one parameter families of Legendrian knots, Geom. Topol., 9, 2013-2078, 2005 ·Zbl 1095.53059 ·doi:10.2140/gt.2005.9.2013 |
[35] | Kálmán, T., Braid-positive Legendrian links, Int. Math. Res. Not., 29, 2006 ·Zbl 1128.57006 ·doi:10.1155/IMRN/2006/14874 |
[36] | Karlsson, C., A note on coherent orientations for exact Lagrangian cobordisms, Quantum Topol., 11, 1, 1-54, 2020 ·Zbl 1439.53071 ·doi:10.4171/QT/132 |
[37] | Keller, B., The periodicity conjecture for pairs of Dynkin diagrams, Ann. Math. (2), 177, 1, 111-170, 2013 ·Zbl 1320.17007 ·doi:10.4007/annals.2013.177.1.3 |
[38] | Keller, B.: Quiver mutation and combinatorial DT-invariants. Discrete Math. Theor. Comput. Sci. (2017). arXiv:1709.03143 |
[39] | Kumar, S., Kac-Moody Groups, Their Flag Varieties and Representation Theory, 2002, Boston: Birkhäuser Boston, Inc., Boston ·Zbl 1026.17030 ·doi:10.1007/978-1-4612-0105-2 |
[40] | Lee, K.; Li, L.; Mills, M.; Schiffler, R.; Seceleanu, A., Frieze varieties: a characterization of the finite-tame-wild trichotomy for acyclic quivers, Adv. Math., 367, 2020 ·Zbl 1445.16014 ·doi:10.1016/j.aim.2020.107130 |
[41] | Lee, K.; Schiffler, R., Positivity for cluster algebras, Ann. Math. (2), 182, 1, 73-125, 2015 ·Zbl 1350.13024 ·doi:10.4007/annals.2015.182.1.2 |
[42] | Nadler, D., Microlocal branes are constructible sheaves, Sel. Math. New Ser., 15, 4, 563-619, 2009 ·Zbl 1197.53116 ·doi:10.1007/s00029-009-0008-0 |
[43] | Ng, L., Computable Legendrian invariants, Topology, 42, 1, 55-82, 2003 ·Zbl 1032.53070 ·doi:10.1016/S0040-9383(02)00010-1 |
[44] | Ng, L.; Rutherford, D.; Shende, V.; Sivek, S.; Zaslow, E., Augmentations are sheaves, Geom. Topol., 24, 5, 2149-2286, 2020 ·Zbl 1457.53064 ·doi:10.2140/gt.2020.24.2149 |
[45] | Nakanishi, T.; Zelevinsky, A., On tropical dualities in cluster algebras, Algebraic Groups and Quantum Groups, 217-226, 2012, Providence: Am. Math. Soc., Providence ·Zbl 1317.13054 ·doi:10.1090/conm/565/11159 |
[46] | Pan, Y., Exact Lagrangian fillings of Legendrian (2,n) torus links, Pac. J. Math., 289, 2, 417-441, 2017 ·Zbl 1432.53127 ·doi:10.2140/pjm.2017.289.417 |
[47] | Sabloff, J., Augmentations and rulings of Legendrian knots, Int. Math. Res. Not., 2005, 19, 1157-1180, 2005 ·Zbl 1082.57020 ·doi:10.1155/IMRN.2005.1157 |
[48] | Shen, L., Stasheff polytopes and the coordinate ring of the cluster \(\mathcal{X} \)-variety of type A_n, Sel. Math. New Ser., 20, 3, 929-959, 2014 ·Zbl 1296.05210 ·doi:10.1007/s00029-013-0124-8 |
[49] | Sivek, S., A bordered Chekanov-Eliashberg algebra, J. Topol., 4, 1, 73-104, 2011 ·Zbl 1219.57022 ·doi:10.1112/jtopol/jtq035 |
[50] | Shende, V.; Treumann, D.; Williams, H.; Zaslow, E., Cluster varieties from Legendrian knots, Duke Math. J., 168, 15, 2801-2871, 2019 ·Zbl 1475.53094 ·doi:10.1215/00127094-2019-0027 |
[51] | Shende, V.; Treumann, D.; Zaslow, E., Legendrian knots and constructible sheaves, Invent. Math., 207, 3, 1031-1133, 2017 ·Zbl 1369.57016 ·doi:10.1007/s00222-016-0681-5 |
[52] | Shen, L.; Weng, D., Cluster structures on double Bott-Samelson cells, Forum Math. Sigma., 9, e66, 1-89, 2021 ·Zbl 1479.13028 ·doi:10.1017/fms.2021.59 |
[53] | Sylvan, Z., On partially wrapped Fukaya categories, J. Topol., 12, 2, 372-441, 2019 ·Zbl 1430.53097 ·doi:10.1112/topo.12088 |
[54] | Weng, D., Donaldson-Thomas transformation of Grassmannian, Adv. Math., 383, 2021 ·Zbl 1471.14118 ·doi:10.1016/j.aim.2021.107721 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.