[1] | Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, vol. 55, 1972, Dover Publications: Dover Publications New York ·Zbl 0543.33001 |
[2] | Balázs, M.; Busani, O.; Seppäläinen, T., Local stationarity in exponential last-passage percolation, Probab. Theory Relat. Fields, 180, 1, 113-162, 2021 ·Zbl 1483.60144 |
[3] | Baik, J.; Deift, P.; Johansson, K., On the distribution of the length of the longest increasing subsequence of random permutations, J. Am. Math. Soc., 12, 4, 1119-1178, 1999 ·Zbl 0932.05001 |
[4] | Busani, O.; Ferrari, P., Universality of the geodesic tree in last passage percolation, Ann. Probab., 50, 90-130, 2022 ·Zbl 1499.60325 |
[5] | Borodin, A.; Gorin, V., Lectures on integrable probability, Probab. Stat. Phys. St. Petersburg, 91, 155-214, 2016 ·Zbl 1388.60157 |
[6] | Basu, R.; Ganguly, S.; Hammond, A., Fractal geometry of airy_2 processes coupled via the Airy sheet, Ann. Probab., 49, 1, 485-505, 2021 ·Zbl 1457.82165 |
[7] | Bates, E.; Ganguly, S.; Hammond, A., Hausdorff dimensions for shared endpoints of disjoint geodesics in the directed landscape, Electron. J. Probab., 27, 1-44, 2022 ·Zbl 1496.60115 |
[8] | Basu, R.; Ganguly, S.; Zhang, L., Temporal correlation in last passage percolation with flat initial condition via Brownian comparison, Commun. Math. Phys., 383, 3, 1805-1888, 2021 ·Zbl 1468.60111 |
[9] | Corwin, I.; Hammond, A., Brownian Gibbs property for Airy line ensembles, Invent. Math., 195, 2, 441-508, 2014 ·Zbl 1459.82117 |
[10] | Calvert, J.; Hammond, A.; Hegde, M., Brownian structure in the KPZ fixed point, 2019 |
[11] | Corwin, I.; Hammond, A.; Hegde, M.; Matetski, K., Exceptional times when the KPZ fixed point violates Johansson’s conjecture on maximizer uniqueness, 2021, arXiv preprint ·Zbl 1509.82086 |
[12] | Corwin, I., The Kardar-Parisi-Zhang equation and universality class, Random Matrices: Theory Appl., 1, 01, Article 1130001 pp., 2012 ·Zbl 1247.82040 |
[13] | Dauvergne, D.; Ortmann, J.; Virág, B., The directed landscape, 2018 |
[14] | Dauvergne, D.; Sarkar, S.; Virág, B., Three-halves variation of geodesics in the directed landscape, 2020, arXiv preprint |
[15] | Dauvergne, D.; Virág, B., Bulk properties of the Airy line ensemble, Ann. Probab., 49, 4, 1738-1777, 2021 ·Zbl 1484.60107 |
[16] | Dauvergne, D.; Virág, B., The scaling limit of the longest increasing subsequence, 2021, arXiv preprint |
[17] | Dauvergne, D.; Zhang, L., Disjoint optimizers and the directed landscape, 2021, arXiv preprint |
[18] | Moreno Flores, G.; Quastel, J.; Remenik, D., Endpoint distribution of directed polymers in \(1 + 1\) dimensions, Commun. Math. Phys., 317, 2, 363-380, 2013 ·Zbl 1257.82117 |
[19] | Ferrari, P. L.; Spohn, H., Random growth models, 2010 ·Zbl 1234.60010 |
[20] | Ganguly, S.; Hammond, A., Stability and chaos in dynamical last passage percolation, 2020, arXiv preprint |
[21] | Hammond, A., A patchwork quilt sewn from Brownian fabric: regularity of polymer weight profiles in Brownian last passage percolation, Forum Math. Pi, 7, 2019 ·Zbl 1427.82036 |
[22] | Hammond, A., Exponents governing the rarity of disjoint polymers in Brownian last passage percolation, Proc. Lond. Math. Soc., 120, 3, 370-433, 2020 ·Zbl 1453.82078 |
[23] | Hammond, A., Brownian regularity for the Airy line ensemble, and multi-polymer watermelons in brownian last passage percolation, (Mem. Amer. Math. Soc., 2022) ·Zbl 1506.82002 |
[24] | Johansson, K., Shape fluctuations and random matrices, Commun. Math. Phys., 209, 2, 437-476, 2000 ·Zbl 0969.15008 |
[25] | Johansson, K., Discrete polynuclear growth and determinantal processes, Commun. Math. Phys., 242, 1-2, 277-329, 2003 ·Zbl 1031.60084 |
[26] | Matetski, K.; Quastel, J.; Remenik, D., The KPZ fixed point, Acta Math., 227, 1, 115-203, 2021 ·Zbl 1505.82041 |
[27] | Nica, M.; Quastel, J.; Remenik, D., One-sided reflected Brownian motions and the KPZ fixed point, Forum Math. Sigma, 8, e63, 2020 ·Zbl 1455.60131 |
[28] | Pimentel, L., On the location of the maximum of a continuous stochastic process, J. Appl. Probab., 51, 1, 152-161, 2014 ·Zbl 1305.60029 |
[29] | Pimentel, L., Local behaviour of Airy processes, J. Stat. Phys., 173, 6, 1614-1638, 2018 ·Zbl 1405.82029 |
[30] | Prähofer, M.; Spohn, H., Scale invariance of the PNG droplet and the Airy process, J. Stat. Phys., 108, 5-6, 1071-1106, 2002 ·Zbl 1025.82010 |
[31] | Quastel, J.; Matetski, K., From the totally asymmetric simple exclusion process to the KPZ fixed point, 2017, arXiv preprint |
[32] | Quastel, J.; Sarkar, S., Convergence of exclusion processes and KPZ equation to the KPZ fixed point, 2020, arXiv preprint ·Zbl 1520.60063 |
[33] | Quastel, J., Introduction to KPZ, (Current Developments in Mathematics, 2011, International Press of Boston) ·Zbl 1316.60019 |
[34] | Romik, D., The Surprising Mathematics of Longest Increasing Subsequences, vol. 4, 2015, Cambridge University Press ·Zbl 1345.05003 |
[35] | Revuz, D.; Yor, M., Continuous Martingales and Brownian Motion, vol. 293, 2013, Springer Science & Business Media |
[36] | Simon, B., Trace Ideals and Their Applications, vol. 120, 2005, American Mathematical Soc. ·Zbl 1074.47001 |
[37] | Schramm, O.; Steif, J., Quantitative noise sensitivity and exceptional times for percolation, Ann. Math., 171, 2, 619-672, 2010 ·Zbl 1213.60160 |
[38] | Sarkar, S.; Virág, B., Brownian absolute continuity of the KPZ fixed point with arbitrary initial condition, Ann. Probab., 49, 4, 1718-1737, 2021 ·Zbl 1473.60150 |
[39] | Virág, B., The heat and the landscape I, 2020, arXiv preprint |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.