Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

\(t\)-quantized Cartan matrix and R-matrices for cuspidal modules over quiver Hecke algebras.(English)Zbl 07823123

Summary: As every simple module of a quiver Hecke algebra appears as the image of the R-matrix defined on the convolution product of certain cuspidal modules, knowing the \(\mathbb{Z}\)-invariants of the R-matrices between cuspidal modules is quite significant. In this paper, we prove that the \((q, t)\)-Cartan matrix specialized at \(q = 1\) ofany finite type, called the\(t\)-quantized Cartan matrix, inform us of the invariants of R-matrices. To prove this, we use combinatorial AR-quivers associated with Dynkin quivers and their properties as crucial ingredients.

MSC:

16T30 Connections of Hopf algebras with combinatorics
17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras

Cite

References:

[1]Akasaka, T.; Kashiwara, M., Finite-dimensional representations of quantum affine algebras, Publ. RIMS Kyoto Univ., 33, 839-867, 1997 ·Zbl 0915.17011
[2]Bedard, R., On commutation classes of reduced words in Weyl groups, Eur. J. Comb., 20, 483-505, 1999 ·Zbl 0934.05126
[3]Brundan, J.; Kleshchev, A.; McNamara, P. J., Homological properties of finite Khovanov-Lauda-Rouquier algebras, Duke Math. J., 163, 1353-1404, 2014 ·Zbl 1314.16005
[4]Chari, V.; Moura, A. A., Characters and blocks for finite-dimensional representations of quantum affine algebras, Int. Math. Res. Not., 5, 257-298, 2005 ·Zbl 1074.17004
[5]Date, E.; Okado, M., Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \(A_n^{( 1 )}\), Int. J. Mod. Phys. A, 9, 399-417, 1994 ·Zbl 0905.17004
[6]Frenkel, E.; Hernandez, D., Langlands duality for finite-dimensional representations of quantum affine algebras, Lett. Math. Phys., 96, 217-261, 2011 ·Zbl 1222.17014
[7]Frenkel, E.; Mukhin, E., Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras, Commun. Math. Phys., 216, 1, 23-57, 2001 ·Zbl 1051.17013
[8]Frenkel, E.; Reshetikhin, N., Deformations of W-algebras associated to simple Lie algebras, Commun. Math. Phys., 197, 1-32, 1998 ·Zbl 0939.17011
[9]Frenkel, E.; Reshetikhin, N., The q-characters of representations of quantum affine algebras, (Recent Developments in Quantum Affine Algebras and Related Topics. Recent Developments in Quantum Affine Algebras and Related Topics, Contemp. Math., vol. 248, 1999), 163-205 ·Zbl 0973.17015
[10]Fujita, R., Affine highest weight categories and quantum affine Schur-Weyl duality of Dynkin quiver types, Represent. Theory, 26, 211-263, 2022 ·Zbl 1495.17021
[11]Fujita, R., Graded quiver varieties and singularities of normalized R-matrices for fundamental modules, Sel. Math. New Ser., 28, 1, 1-45, 2022 ·Zbl 1512.17021
[12]Fujita, R.; Hernandez, D.; Oh, S-j.; Oya, H., Isomorphisms among quantum Grothendieck rings and propagation of positivity, J. Reine Angew. Math., 785, 117-185, 2022 ·Zbl 1492.81061
[13]Fujita, R.; Murakami, K., Deformed Cartan matrices and generalized preprojective algebras I: finite type, Int. Math. Res., 8, 6924-6975, 2023 ·Zbl 1520.17023
[14]Fujita, R.; Oh, S-j., Q-datum and representation theory of untwisted quantum affine algebras, Commun. Math. Phys., 384, 1351-1407, 2021 ·Zbl 1507.17029
[15]Happel, D., On the derived category of a finite-dimensional algebra, Comment. Math. Helv., 62, 3, 339-389, 1987 ·Zbl 0626.16008
[16]Hernandez, D., Algebraic approach to \(q, t\)-characters, Adv. Math., 187, 1, 1-52, 2004 ·Zbl 1098.17009
[17]Hernandez, D.; Leclerc, B., Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math., 701, 77-126, 2015 ·Zbl 1315.17011
[18]Hill, D.; Melvin, G.; Mondragon, D., Representations of quiver Hecke algebras via Lyndon bases, J. Pure Appl. Algebra, 216, 5, 1052-1079, 2012 ·Zbl 1264.20006
[19]Kac, V., Infinite Dimensional Lie Algebras, 1990, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0716.17022
[20]Kang, S.-J.; Kashiwara, M.; Kim, M., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras II, Duke Math. J., 164, 8, 1549-1602, 2015 ·Zbl 1323.81046
[21]Kang, S.-J.; Kashiwara, M.; Kim, M., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, Invent. Math., 211, 2, 591-685, 2018 ·Zbl 1407.81108
[22]Kang, S.-J.; Kashiwara, M.; Kim, M.; Oh, S-j., Simplicity of heads and socles of tensor products, Compos. Math., 151, 2, 377-396, 2015 ·Zbl 1366.17014
[23]Kang, S.-J.; Kashiwara, M.; Kim, M.; Oh, S-j., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV, Sel. Math. New Ser., 22, 1987-2015, 2016 ·Zbl 1354.81030
[24]Kang, S.-J.; Kashiwara, M.; Kim, M.; Oh, S-j., Monoidal categorification of cluster algebras, J. Am. Math. Soc., 31, 2, 349-426, 2018 ·Zbl 1460.13039
[25]Kang, S.-J.; Kashiwara, M.; Misra, K. C.; Miwa, T.; Nakashima, T.; Nakayashiki, A., Perfect crystals of quantum affine Lie algebras, Duke Math. J., 68, 499-607, 1992 ·Zbl 0774.17017
[26]Kashiwara, M., On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J., 63, 465-516, 1991 ·Zbl 0739.17005
[27]Kashiwara, M., On level zero representations of quantum affine algebras, Duke Math. J., 112, 117-175, 2002 ·Zbl 1033.17017
[28]Kashiwara, M.; Kim, M., Laurent phenomenon and simple modules of quiver Hecke algebras, Compos. Math., 155, 12, 2263-2295, 2019 ·Zbl 1505.13034
[29]Kashiwara, M.; Kim, M.; Oh, S-j.; Park, E., Monoidal categories associated with strata of flag manifolds, Adv. Math., 328, 959-1009, 2018 ·Zbl 1437.17005
[30]Kashiwara, M.; Kim, M.; Oh, S-j.; Park, E., Monoidal categorification and quantum affine algebras, Compos. Math., 156, 5, 1039-1077, 2020 ·Zbl 1497.17020
[31]Kashiwara, M.; Kim, M.; Oh, S-j.; Park, E., Localizations for quiver Hecke algebras, Pure Appl. Math. Q., 17, 4, 1465-1548, 2021 ·Zbl 1495.18020
[32]Kashiwara, M.; Kim, M.; Oh, S-j.; Park, E., PBW theory for quantum affine algebras, J. Eur. Math. Soc., 2023
[33]Kashiwara, M.; Kim, M.; Oh, S-j.; Park, E., Simply-laced root systems arising from quantum affine algebras, Compos. Math., 158, 1, 168-210, 2022 ·Zbl 1512.17022
[34]Kashiwara, M.; Oh, S-j., Categorical relations between Langlands dual quantum affine algebras: doubly laced types, J. Algebraic Comb., 49, 401-435, 2019 ·Zbl 1479.17027
[35]Kashiwara, M.; Oh, S-j., The \((q, t)\)-Cartan matrix specialized at \(q = 1\) and its application, Math. Z., 303, 42, 2023 ·Zbl 1511.17038
[36]Kashiwara, M.; Park, E., Affinizations and R-matrices for quiver Hecke algebras, J. Eur. Math. Soc., 20, 5, 1161-1193, 2018 ·Zbl 1475.16024
[37]Kato, S., Poincaré-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J., 163, 3, 619-663, 2014 ·Zbl 1292.17012
[38]Kato, S., On the monoidality of Saito reflection functors, Int. Math. Res. Not., 22, 8600-8623, 2020 ·Zbl 1479.16010
[39]Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups I, Represent. Theory, 13, 309-347, 2009 ·Zbl 1188.81117
[40]Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups II, Trans. Am. Math. Soc., 363, 2685-2700, 2011 ·Zbl 1214.81113
[41]Kleshchev, A.; Ram, A., Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words, Math. Ann., 349, 4, 943-975, 2011 ·Zbl 1267.20010
[42]Lusztig, G., Canonical bases arising from quantized enveloping algebras, J. Am. Math. Soc., 3, 2, 447-498, 1990 ·Zbl 0703.17008
[43]Lusztig, G., Quivers, perverse sheaves, and quantized enveloping algebras, J. Am. Math. Soc., 4, 2, 365-421, 1991 ·Zbl 0738.17011
[44]McNamara, P. J., Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: finite type, J. Reine Angew. Math., 707, 103-124, 2015 ·Zbl 1378.17018
[45]Nakajima, H., Quiver varieties and t -analogs of q-characters of quantum affine algebras, Ann. Math. (2), 160, 1057-1097, 2004 ·Zbl 1140.17015
[46]Naoi, K., Equivalence via generalized quantum affine Schur-Weyl duality, 2021
[47]Oh, S-j., The denominators of normalized R-matrices of types \(A_{2 n - 1}^{( 2 )}, A_{2 n}^{( 2 )}, B_n^{( 1 )}\) and \(D_{n + 1}^{( 2 )}\), Publ. Res. Inst. Math. Sci., 51, 4, 709-744, 2015 ·Zbl 1337.81080
[48]Oh, S-j., Auslander-Reiten quiver of type D and generalized quantum affine Schur-Weyl duality, J. Algebra, 460, 203-252, 2016 ·Zbl 1338.05274
[49]Oh, S-j., Auslander-Reiten quiver of type A and generalized quantum affine Schur-Weyl duality, Trans. Am. Math. Soc., 369, 1895-1933, 2017 ·Zbl 1351.05230
[50]Oh, S-j., Auslander-Reiten quiver and representation theories related to KLR-type Schur-Weyl duality, Math. Z., 291, 1, 499-554, 2019 ·Zbl 1456.16010
[51]Oh, S-j.; Scrimshaw, T., Categorical relations between Langlands dual quantum affine algebras: exceptional cases, Commun. Math. Phys., 368, 1, 295-367, 2019 ·Zbl 1439.81063
[52]Oh, S-j.; Suh, U. R., Combinatorial Auslander-Reiten quivers and reduced expressions, J. Korean Math. Soc., 56, 2, 353-385, 2019 ·Zbl 1453.16014
[53]Oh, S-j.; Suh, U. R., Twisted and folded Auslander-Reiten quiver and applications to the representation theory of quantum affine algebras, J. Algebra, 535, 53-132, 2019 ·Zbl 1419.81023
[54]Rouquier, R., 2-Kac-Moody algebras
[55]Rouquier, R., Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq., 19, 2, 359-410, 2012 ·Zbl 1247.20002
[56]Varagnolo, M.; Vasserot, E., Perverse sheaves and quantum Grothendieck rings, (Studies in Memory of Issai Schur. Studies in Memory of Issai Schur, Progr. Math., vol. 210, 2002, Birkhäuser-Verlag: Birkhäuser-Verlag Basel), 345-365 ·Zbl 1162.17307
[57]Varagnolo, M.; Vasserot, E., Standard modules of quantum affine algebras, Duke Math. J., 111, 3, 509-533, 2002 ·Zbl 1011.17012
[58]Varagnolo, M.; Vasserot, E., Canonical bases and KLR algebras, J. Reine Angew. Math., 659, 67-100, 2011 ·Zbl 1229.17019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp