[1] | Akasaka, T.; Kashiwara, M., Finite-dimensional representations of quantum affine algebras, Publ. RIMS Kyoto Univ., 33, 839-867, 1997 ·Zbl 0915.17011 |
[2] | Bedard, R., On commutation classes of reduced words in Weyl groups, Eur. J. Comb., 20, 483-505, 1999 ·Zbl 0934.05126 |
[3] | Brundan, J.; Kleshchev, A.; McNamara, P. J., Homological properties of finite Khovanov-Lauda-Rouquier algebras, Duke Math. J., 163, 1353-1404, 2014 ·Zbl 1314.16005 |
[4] | Chari, V.; Moura, A. A., Characters and blocks for finite-dimensional representations of quantum affine algebras, Int. Math. Res. Not., 5, 257-298, 2005 ·Zbl 1074.17004 |
[5] | Date, E.; Okado, M., Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \(A_n^{( 1 )}\), Int. J. Mod. Phys. A, 9, 399-417, 1994 ·Zbl 0905.17004 |
[6] | Frenkel, E.; Hernandez, D., Langlands duality for finite-dimensional representations of quantum affine algebras, Lett. Math. Phys., 96, 217-261, 2011 ·Zbl 1222.17014 |
[7] | Frenkel, E.; Mukhin, E., Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras, Commun. Math. Phys., 216, 1, 23-57, 2001 ·Zbl 1051.17013 |
[8] | Frenkel, E.; Reshetikhin, N., Deformations of W-algebras associated to simple Lie algebras, Commun. Math. Phys., 197, 1-32, 1998 ·Zbl 0939.17011 |
[9] | Frenkel, E.; Reshetikhin, N., The q-characters of representations of quantum affine algebras, (Recent Developments in Quantum Affine Algebras and Related Topics. Recent Developments in Quantum Affine Algebras and Related Topics, Contemp. Math., vol. 248, 1999), 163-205 ·Zbl 0973.17015 |
[10] | Fujita, R., Affine highest weight categories and quantum affine Schur-Weyl duality of Dynkin quiver types, Represent. Theory, 26, 211-263, 2022 ·Zbl 1495.17021 |
[11] | Fujita, R., Graded quiver varieties and singularities of normalized R-matrices for fundamental modules, Sel. Math. New Ser., 28, 1, 1-45, 2022 ·Zbl 1512.17021 |
[12] | Fujita, R.; Hernandez, D.; Oh, S-j.; Oya, H., Isomorphisms among quantum Grothendieck rings and propagation of positivity, J. Reine Angew. Math., 785, 117-185, 2022 ·Zbl 1492.81061 |
[13] | Fujita, R.; Murakami, K., Deformed Cartan matrices and generalized preprojective algebras I: finite type, Int. Math. Res., 8, 6924-6975, 2023 ·Zbl 1520.17023 |
[14] | Fujita, R.; Oh, S-j., Q-datum and representation theory of untwisted quantum affine algebras, Commun. Math. Phys., 384, 1351-1407, 2021 ·Zbl 1507.17029 |
[15] | Happel, D., On the derived category of a finite-dimensional algebra, Comment. Math. Helv., 62, 3, 339-389, 1987 ·Zbl 0626.16008 |
[16] | Hernandez, D., Algebraic approach to \(q, t\)-characters, Adv. Math., 187, 1, 1-52, 2004 ·Zbl 1098.17009 |
[17] | Hernandez, D.; Leclerc, B., Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math., 701, 77-126, 2015 ·Zbl 1315.17011 |
[18] | Hill, D.; Melvin, G.; Mondragon, D., Representations of quiver Hecke algebras via Lyndon bases, J. Pure Appl. Algebra, 216, 5, 1052-1079, 2012 ·Zbl 1264.20006 |
[19] | Kac, V., Infinite Dimensional Lie Algebras, 1990, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0716.17022 |
[20] | Kang, S.-J.; Kashiwara, M.; Kim, M., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras II, Duke Math. J., 164, 8, 1549-1602, 2015 ·Zbl 1323.81046 |
[21] | Kang, S.-J.; Kashiwara, M.; Kim, M., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, Invent. Math., 211, 2, 591-685, 2018 ·Zbl 1407.81108 |
[22] | Kang, S.-J.; Kashiwara, M.; Kim, M.; Oh, S-j., Simplicity of heads and socles of tensor products, Compos. Math., 151, 2, 377-396, 2015 ·Zbl 1366.17014 |
[23] | Kang, S.-J.; Kashiwara, M.; Kim, M.; Oh, S-j., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV, Sel. Math. New Ser., 22, 1987-2015, 2016 ·Zbl 1354.81030 |
[24] | Kang, S.-J.; Kashiwara, M.; Kim, M.; Oh, S-j., Monoidal categorification of cluster algebras, J. Am. Math. Soc., 31, 2, 349-426, 2018 ·Zbl 1460.13039 |
[25] | Kang, S.-J.; Kashiwara, M.; Misra, K. C.; Miwa, T.; Nakashima, T.; Nakayashiki, A., Perfect crystals of quantum affine Lie algebras, Duke Math. J., 68, 499-607, 1992 ·Zbl 0774.17017 |
[26] | Kashiwara, M., On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J., 63, 465-516, 1991 ·Zbl 0739.17005 |
[27] | Kashiwara, M., On level zero representations of quantum affine algebras, Duke Math. J., 112, 117-175, 2002 ·Zbl 1033.17017 |
[28] | Kashiwara, M.; Kim, M., Laurent phenomenon and simple modules of quiver Hecke algebras, Compos. Math., 155, 12, 2263-2295, 2019 ·Zbl 1505.13034 |
[29] | Kashiwara, M.; Kim, M.; Oh, S-j.; Park, E., Monoidal categories associated with strata of flag manifolds, Adv. Math., 328, 959-1009, 2018 ·Zbl 1437.17005 |
[30] | Kashiwara, M.; Kim, M.; Oh, S-j.; Park, E., Monoidal categorification and quantum affine algebras, Compos. Math., 156, 5, 1039-1077, 2020 ·Zbl 1497.17020 |
[31] | Kashiwara, M.; Kim, M.; Oh, S-j.; Park, E., Localizations for quiver Hecke algebras, Pure Appl. Math. Q., 17, 4, 1465-1548, 2021 ·Zbl 1495.18020 |
[32] | Kashiwara, M.; Kim, M.; Oh, S-j.; Park, E., PBW theory for quantum affine algebras, J. Eur. Math. Soc., 2023 |
[33] | Kashiwara, M.; Kim, M.; Oh, S-j.; Park, E., Simply-laced root systems arising from quantum affine algebras, Compos. Math., 158, 1, 168-210, 2022 ·Zbl 1512.17022 |
[34] | Kashiwara, M.; Oh, S-j., Categorical relations between Langlands dual quantum affine algebras: doubly laced types, J. Algebraic Comb., 49, 401-435, 2019 ·Zbl 1479.17027 |
[35] | Kashiwara, M.; Oh, S-j., The \((q, t)\)-Cartan matrix specialized at \(q = 1\) and its application, Math. Z., 303, 42, 2023 ·Zbl 1511.17038 |
[36] | Kashiwara, M.; Park, E., Affinizations and R-matrices for quiver Hecke algebras, J. Eur. Math. Soc., 20, 5, 1161-1193, 2018 ·Zbl 1475.16024 |
[37] | Kato, S., Poincaré-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J., 163, 3, 619-663, 2014 ·Zbl 1292.17012 |
[38] | Kato, S., On the monoidality of Saito reflection functors, Int. Math. Res. Not., 22, 8600-8623, 2020 ·Zbl 1479.16010 |
[39] | Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups I, Represent. Theory, 13, 309-347, 2009 ·Zbl 1188.81117 |
[40] | Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups II, Trans. Am. Math. Soc., 363, 2685-2700, 2011 ·Zbl 1214.81113 |
[41] | Kleshchev, A.; Ram, A., Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words, Math. Ann., 349, 4, 943-975, 2011 ·Zbl 1267.20010 |
[42] | Lusztig, G., Canonical bases arising from quantized enveloping algebras, J. Am. Math. Soc., 3, 2, 447-498, 1990 ·Zbl 0703.17008 |
[43] | Lusztig, G., Quivers, perverse sheaves, and quantized enveloping algebras, J. Am. Math. Soc., 4, 2, 365-421, 1991 ·Zbl 0738.17011 |
[44] | McNamara, P. J., Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: finite type, J. Reine Angew. Math., 707, 103-124, 2015 ·Zbl 1378.17018 |
[45] | Nakajima, H., Quiver varieties and t -analogs of q-characters of quantum affine algebras, Ann. Math. (2), 160, 1057-1097, 2004 ·Zbl 1140.17015 |
[46] | Naoi, K., Equivalence via generalized quantum affine Schur-Weyl duality, 2021 |
[47] | Oh, S-j., The denominators of normalized R-matrices of types \(A_{2 n - 1}^{( 2 )}, A_{2 n}^{( 2 )}, B_n^{( 1 )}\) and \(D_{n + 1}^{( 2 )}\), Publ. Res. Inst. Math. Sci., 51, 4, 709-744, 2015 ·Zbl 1337.81080 |
[48] | Oh, S-j., Auslander-Reiten quiver of type D and generalized quantum affine Schur-Weyl duality, J. Algebra, 460, 203-252, 2016 ·Zbl 1338.05274 |
[49] | Oh, S-j., Auslander-Reiten quiver of type A and generalized quantum affine Schur-Weyl duality, Trans. Am. Math. Soc., 369, 1895-1933, 2017 ·Zbl 1351.05230 |
[50] | Oh, S-j., Auslander-Reiten quiver and representation theories related to KLR-type Schur-Weyl duality, Math. Z., 291, 1, 499-554, 2019 ·Zbl 1456.16010 |
[51] | Oh, S-j.; Scrimshaw, T., Categorical relations between Langlands dual quantum affine algebras: exceptional cases, Commun. Math. Phys., 368, 1, 295-367, 2019 ·Zbl 1439.81063 |
[52] | Oh, S-j.; Suh, U. R., Combinatorial Auslander-Reiten quivers and reduced expressions, J. Korean Math. Soc., 56, 2, 353-385, 2019 ·Zbl 1453.16014 |
[53] | Oh, S-j.; Suh, U. R., Twisted and folded Auslander-Reiten quiver and applications to the representation theory of quantum affine algebras, J. Algebra, 535, 53-132, 2019 ·Zbl 1419.81023 |
[54] | Rouquier, R., 2-Kac-Moody algebras |
[55] | Rouquier, R., Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq., 19, 2, 359-410, 2012 ·Zbl 1247.20002 |
[56] | Varagnolo, M.; Vasserot, E., Perverse sheaves and quantum Grothendieck rings, (Studies in Memory of Issai Schur. Studies in Memory of Issai Schur, Progr. Math., vol. 210, 2002, Birkhäuser-Verlag: Birkhäuser-Verlag Basel), 345-365 ·Zbl 1162.17307 |
[57] | Varagnolo, M.; Vasserot, E., Standard modules of quantum affine algebras, Duke Math. J., 111, 3, 509-533, 2002 ·Zbl 1011.17012 |
[58] | Varagnolo, M.; Vasserot, E., Canonical bases and KLR algebras, J. Reine Angew. Math., 659, 67-100, 2011 ·Zbl 1229.17019 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.