Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The dg Leavitt algebra, singular Yoneda category and singularity category.(English)Zbl 07811959

Summary: For any finite dimensional algebra \(\Lambda\) given by a quiver with relations, we prove that its dg singularity category is quasi-equivalent to the perfect dg derived category of a dg Leavitt path algebra. The result might be viewed as a deformed version of the known description of the dg singularity category of a radical-square-zero algebra in terms of a Leavitt path algebra with trivial differential.
The above result is achieved in two steps. We first introduce the singular Yoneda dg category of \(\Lambda\), which is quasi-equivalent to the dg singularity category of \(\Lambda\). The construction of this new dg category follows from a general operation for dg categories, namely an explicit dg localization inverting a natural transformation from the identity functor to a dg endofunctor. This localization turns out to be quasi-equivalent to a dg quotient category. Secondly, we prove that the endomorphism algebra of the quotient of \(\Lambda\) modulo its Jacobson radical in the singular Yoneda dg category is isomorphic to the dg Leavitt path algebra. The appendix is devoted to an alternative proof of the result using Koszul-Moore duality and derived localizations.

MSC:

16S88 Leavitt path algebras
16E45 Differential graded algebras and applications (associative algebraic aspects)
18G80 Derived categories, triangulated categories
18E35 Localization of categories, calculus of fractions
16G20 Representations of quivers and partially ordered sets

Cite

References:

[1]Abrams, G.; Aranda Pino, G., The Leavitt path algebra of a graph, J. Algebra, 293, 2, 319-334, (2005) ·Zbl 1119.16011
[2]Abrams, G.; Ara, P.; Siles Molina, M., Leavitt Path Algebras, Lecture Notes in Math., vol. 2191, (2017), Springer-Verlag: Springer-Verlag London ·Zbl 1393.16001
[3]Abrams, G.; Louly, A.; Pardo, E.; Smith, C., Flow invariants in the classification of Leavitt path algebras, J. Algebra, 333, 202-231, (2011) ·Zbl 1263.16007
[4]Ara, P.; Gonzalez-Barroso, M. A.; Goodearl, K. R.; Pardo, E., Fractional skew monoid rings, J. Algebra, 278, 1, 104-126, (2004) ·Zbl 1063.16033
[5]Ara, P.; Moreno, M. A.; Pardo, E., Nonstable K-theory for graph algebras, Algebr. Represent. Theory, 10, 2, 157-178, (2007) ·Zbl 1123.16006
[6]Avramov, L. L.; Veliche, O., Stable cohomology over local rings, Adv. Math., 213, 93-139, (2007) ·Zbl 1127.13012
[7]Barmeier, S.; Wang, Z., Deformations of path algebras of quivers with relations, (2023)
[8]Bautista, R.; Salmeron, L.; Zuazua, R., Differential Tensor Algebras and Their Module Categories, London Math. Soc. Lecture Notes Ser., vol. 362, (2009), Cambridge Univ. Press ·Zbl 1266.16007
[9]Beilinson, A. A., Coherent sheaves on \(\mathbf{P}^n\) and problems in linear algebra, Funct. Anal. Appl., 12, 214-216, (1978) ·Zbl 0424.14003
[10]Blanc, A.; Robalo, M.; Töen, B.; Vezzosi, G., Motivic realizations of singularity categories and vanishing cycles, J. Éc. Polytech. Math., 5, 651-747, (2018) ·Zbl 1423.14151
[11]Bondal, A. I.; Kapranov, M. M., Enhanced triangulated categories, Mat. Sb.. Mat. Sb., Math. USSR Sb., 70, 1, 93-107, (1991), translation: ·Zbl 0729.18008
[12]Bondal, A. I.; Larsen, M.; Lunts, V. A., Grothendieck ring of pretriangulated categories, Int. Math. Res. Not., 29, 1461-1495, (2004) ·Zbl 1079.18008
[13]Braun, C.; Chuang, J.; Lazarev, A., Derived localization of algebras and modules, Adv. Math., 328, 555-622, (2018) ·Zbl 1388.18023
[14]Brown, M. K.; Dyckerhoff, T., Topological K-theory of equivariant singularity categories, Homol. Homotopy Appl., 22, 2, 1-29, (2020) ·Zbl 1440.14008
[15]Buchweitz, R. O., Maximal Cohen-Macaulay Modules and Tate-Cohomology over Gorenstein Rings, Math. Surveys and Monographs, vol. 262, (2021), Amer. Math. Soc., with appendices by L.L. Avramov, B. Briggs, S.B. Iyengar, and J.C. Letz ·Zbl 1505.13002
[16]Căldăraru, A.; Li, S.; Tu, J., Categorical primitive forms and Gromov-Witten invariants of \(A_n\) singularities, Int. Math. Res. Not., 24, 18489-18519, (2021) ·Zbl 1485.14104
[17]Carlsen, T. M.; Ortega, E., Algebraic Cuntz-Pimsner rings, Proc. Lond. Math. Soc. (3), 103, 601-653, (2011) ·Zbl 1235.16005
[18]Chen, X.; Chen, X. W., Liftable derived equivalences and objective categories, Bull. Lond. Math. Soc., 52, 816-834, (2020) ·Zbl 1457.18017
[19]Chen, X. W., Relative singularity categories and Gorenstein-projective modules, Math. Nachr., 284, 2-3, 199-212, (2011) ·Zbl 1244.18014
[20]Chen, X. W., The singularity category of an algebra with radical square zero, Doc. Math., 16, 921-936, (2011) ·Zbl 1255.18014
[21]Chen, X. W.; Li, H.; Wang, Z., Leavitt path algebras, \( B_\infty \)-algebras and Keller’s conjecture for singular Hochschild cohomology, (2021)
[22]Chen, X. W.; Liu, J.; Wang, R., Singular equivalences induced by bimodules and quadratic monomial algebras, Algebr. Represent. Theory, 26, 609-630, (2023) ·Zbl 1519.18007
[23]Chen, X. W.; Yang, D., Homotopy categories, Leavitt path algebras and Gorenstein projective modules, Int. Math. Res. Not., 10, 2597-2633, (2015) ·Zbl 1325.18002
[24]Cohn, P. M., Some remarks on the invariant basis property, Topology, 5, 215-228, (1966) ·Zbl 0147.28802
[25]Cohn, P. M., Free Rings and Their Relations, London Math. Soc. Monographs, vol. 19, (1985), Academic Press Inc.: Academic Press Inc. London ·Zbl 0659.16001
[26]Cortiñas, G., Classifying Leavitt path algebras up to involution preserving homotopy, (2021) ·Zbl 1548.16027
[27]Cortiñas, G.; Montero, D., Homotopy classification of Leavitt path algebras, Adv. Math., 362, Article 106961 pp., (2020) ·Zbl 1442.16030
[28]Cortiñas, G.; Montero, D., Algebraic bivariant K-theory and Leavitt path algebras, J. Noncommut. Geom., 15, 1, 113-146, (2021) ·Zbl 1468.19008
[29]Cuntz, J.; Quillen, D., Algebra extensions and nonsingularity, J. Am. Math. Soc., 8, 2, 251-289, (1995) ·Zbl 0838.19001
[30]De Deken, O.; Lowen, W., On deformations of triangulated models, Adv. Math., 243, 330-374, (2013) ·Zbl 1296.18011
[31]Drinfeld, V., DG quotients of DG categories, J. Algebra, 272, 2, 643-691, (2004) ·Zbl 1064.18009
[32]Drozd, Y. A.; Kirichenko, V. V., Finite Dimensional Algebras, (1994), Springer-Verlag: Springer-Verlag Berlin Heidelberg, with an appendix by V. Dlab ·Zbl 0816.16001
[33]Dyckerhoff, T., Compact generators in categories of matrix factorizations, Duke Math. J., 159, 2, 223-274, (2011) ·Zbl 1252.18026
[34]Elagin, A.; Lunts, V. A., Derived categories of coherent sheaves on some zero-dimensional schemes, J. Pure Appl. Algebra, 226, 6, Article 106939 pp., (2022) ·Zbl 1495.14029
[35]Elagin, A.; Lunts, V. A.; Schnuerer, O. M., Smoothness of derived categories of algebras, Mosc. Math. J., 20, 2, 277-309, (2020) ·Zbl 1468.16021
[36]Gabriel, P.; Zisman, M., Calculus of Fractions and Homotopy Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 35, (1967), Springer-Verlag: Springer-Verlag New York Inc., New York ·Zbl 0186.56802
[37]Happel, D., Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser., vol. 119, (1988), Cambridge Univ. Press: Cambridge Univ. Press Cambridge ·Zbl 0635.16017
[38]Hazrat, R., The dynamics of Leavitt path algebras, J. Algebra, 384, 242-266, (2013) ·Zbl 1294.16005
[39]Iovanov, M. C.; Sistko, A., On the Toeplitz-Jacobson algebra and direct finiteness, (Groups, Rings, Group Rings, and Hopf Algebras. Groups, Rings, Group Rings, and Hopf Algebras, Contemporary Math., vol. 688, (2017)), 113-124 ·Zbl 1370.16016
[40]Keller, B., Deriving DG categories, Ann. Sci. Éc. Norm. Supér. (4), 27, 1, 63-102, (1994) ·Zbl 0799.18007
[41]Keller, B., Invariance and localization for cyclic homology of dg algebras, J. Pure Appl. Algebra, 123, 223-273, (1998) ·Zbl 0890.18007
[42]Keller, B., On the cyclic homology of exact categories, J. Pure Appl. Algebra, 136, 1, 1-56, (1999) ·Zbl 0923.19004
[43]Keller, B., Introduction to A-infinity algebras and modules, Homol. Homotopy Appl., 3, 1-35, (2001) ·Zbl 0989.18009
[44]Keller, B., Derived invariance of higher structures on the Hochschild complex, (2003), preprint, available at
[45]Keller, B., Koszul duality and coderived categories (after K. Lefèvre), (2003), preprint, available at
[46]Keller, B., On triangulated orbit categories, Doc. Math., 10, 551-581, (2005) ·Zbl 1086.18006
[47]Keller, B., On differential graded categories, (International Congress of Mathematicians. Vol. II, (2006), Eur. Math. Soc.: Eur. Math. Soc. Zürich), 151-190 ·Zbl 1140.18008
[48]Keller, B., Deformed Calabi-Yau completions, with an appendix by Michel Van den Bergh, J. Reine Angew. Math., 654, 125-180, (2011) ·Zbl 1220.18012
[49]Keller, B., Singular Hochschild cohomology via the singularity category, C. R. Math. Acad. Sci. Paris. C. R. Math. Acad. Sci. Paris, C. R. Math. Acad. Sci. Paris, 357, 6, 533-536, (2020), See also ·Zbl 1432.16008
[50]Keller, B.; Lowen, W., On Hochschild cohomology and Morita deformations, Int. Math. Res. Not., 2009, 17, 3221-3235, (2009) ·Zbl 1221.18014
[51]Keller, B.; Lowen, W.; Nicolás, P., On the (non)vanishing of some “derived” categories of curved dg algebras, J. Pure Appl. Algebra, 214, 7, 1271-1284, (2010) ·Zbl 1238.16010
[52]Krause, H., The stable derived category of a noetherian scheme, Compos. Math., 141, 5, 1128-1162, (2005) ·Zbl 1090.18006
[53]Külshammer, J., In the bocs seat: quasi-hereditary algebras and representation type, (Representation Theory-Current Trends and Perspectives, (2017), Eur. Math. Soc. Publishing House), 375-426 ·Zbl 1380.16008
[54]Leavitt, W. G., The module type of a ring, Trans. Am. Math. Soc., 103, 113-130, (1962) ·Zbl 0112.02701
[55]Lefv̀re-Hasegawa, K., Sur les \(A_\infty \)-catégories, , (, N, o, v, e, m, b, e, r, , 2, 0, 0, 3, ), Université Denis Diderot: Université Denis Diderot Paris 7, Thèse de doctorat
[56]Li, H., The injective Leavitt complex, Algebr. Represent. Theory, 21, 4, 833-858, (2018) ·Zbl 1394.16014
[57]Liu, Y.; Zhou, G.; Zimmermann, A., Higman ideal, stable Hochschild homology and Auslander-Reiten conjecture, Math. Z., 270, 759-781, (2012) ·Zbl 1261.16010
[58]Lowen, W.; Van den Bergh, M., Hochschild cohomology of abelian categories and ringed spaces, Adv. Math., 198, 1, 172-221, (2005) ·Zbl 1095.13013
[59]Lowen, W.; Van den Bergh, M., The curvature problem for formal and infinitesimal deformations, (2015)
[60]Lu, D. M.; Palmieri, J. H.; Wu, Q. S.; Zhang, J. J., A-infinity structure on Ext-algebras, J. Pure Appl. Algebra, 213, 11, 2017-2037, (2009) ·Zbl 1231.16008
[61]Lunts, V. A.; Orlov, D., Uniqueness of enhancement for triangulated categories, J. Am. Math. Soc., 23, 3, 853-908, (2010) ·Zbl 1197.14014
[62]Lunts, V. A.; Schnuerer, O. M., Matrix factorizations and motivic measures, J. Noncommut. Geom., 10, 3, 981-1042, (2016) ·Zbl 1362.14021
[63]Lurie, J., Derived algebraic geometry X: formal moduli problems, (2011), preprint, available at
[64]Lurie, J., Higher algebra, (2017)
[65]Mac Lane, S., Homology, (1995), Springer-Verlag: Springer-Verlag Berlin Heidelburg ·Zbl 0818.18001
[66]Neeman, A.; Ranicki, A., Noncommutative localisation in algebraic K-theory I, Geom. Topol., 8, 1385-1425, (2004) ·Zbl 1083.18007
[67]Orlov, D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math., 246, 3, 227-248, (2004) ·Zbl 1101.81093
[68]Rickard, J., Morita theory for derived categories, J. Lond. Math. Soc. (2), 39, 436-456, (1989) ·Zbl 0642.16034
[69]Rickard, J., Derived categories and stable equivalence, J. Pure Appl. Algebra, 61, 303-317, (1989) ·Zbl 0685.16016
[70]Schaps, M., Deformations of finite dimensional algebras and their idempotents, Trans. Am. Math. Soc., 307, 843-856, (1988) ·Zbl 0658.16017
[71]Smith, S. P., Category equivalences involving graded modules over path algebras of quivers, Adv. Math., 230, 1780-1810, (2012) ·Zbl 1264.16042
[72]Sweedler, M. E., The predual theorem to the Jacobson-Bourbaki theorem, Trans. Am. Math. Soc., 213, 391-406, (1975) ·Zbl 0317.16007
[73]Tabuada, G., Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories, C. R. Math. Acad. Sci. Paris, 340, 1, 15-19, (2005) ·Zbl 1060.18010
[74]Tabuada, G., Invariants additifs de dg-catégories, Int. Math. Res. Not., 53, 3309-3339, (2005) ·Zbl 1094.18006
[75]Tabuada, G., On Drinfeld’s DG quotient, J. Algebra, 323, 1226-1240, (2010) ·Zbl 1244.14002
[76]Terilla, J.; Tradler, T., Deformations of associative algebras with inner products, Homol. Homotopy Appl., 8, 2, 115-131, (2006) ·Zbl 1116.16032
[77]Toën, B., The homotopy theory of dg-categories and derived Morita theory, Invent. Math., 167, 615-667, (2007) ·Zbl 1118.18010
[78]Wang, Z., Equivalence singulière à la Morita et la cohomologie de Hochschild singulière, (2016), Université Paris: Université Paris Diderot-Paris 7, available at
[79]Wang, Z., Gerstenhaber algebra and Deligne’s conjecture on Tate-Hochschild cohomology, Trans. Am. Math. Soc., 374, 4537-4577, (2021) ·Zbl 1484.13038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp