[1] | Abrams, G.; Aranda Pino, G., The Leavitt path algebra of a graph, J. Algebra, 293, 2, 319-334, (2005) ·Zbl 1119.16011 |
[2] | Abrams, G.; Ara, P.; Siles Molina, M., Leavitt Path Algebras, Lecture Notes in Math., vol. 2191, (2017), Springer-Verlag: Springer-Verlag London ·Zbl 1393.16001 |
[3] | Abrams, G.; Louly, A.; Pardo, E.; Smith, C., Flow invariants in the classification of Leavitt path algebras, J. Algebra, 333, 202-231, (2011) ·Zbl 1263.16007 |
[4] | Ara, P.; Gonzalez-Barroso, M. A.; Goodearl, K. R.; Pardo, E., Fractional skew monoid rings, J. Algebra, 278, 1, 104-126, (2004) ·Zbl 1063.16033 |
[5] | Ara, P.; Moreno, M. A.; Pardo, E., Nonstable K-theory for graph algebras, Algebr. Represent. Theory, 10, 2, 157-178, (2007) ·Zbl 1123.16006 |
[6] | Avramov, L. L.; Veliche, O., Stable cohomology over local rings, Adv. Math., 213, 93-139, (2007) ·Zbl 1127.13012 |
[7] | Barmeier, S.; Wang, Z., Deformations of path algebras of quivers with relations, (2023) |
[8] | Bautista, R.; Salmeron, L.; Zuazua, R., Differential Tensor Algebras and Their Module Categories, London Math. Soc. Lecture Notes Ser., vol. 362, (2009), Cambridge Univ. Press ·Zbl 1266.16007 |
[9] | Beilinson, A. A., Coherent sheaves on \(\mathbf{P}^n\) and problems in linear algebra, Funct. Anal. Appl., 12, 214-216, (1978) ·Zbl 0424.14003 |
[10] | Blanc, A.; Robalo, M.; Töen, B.; Vezzosi, G., Motivic realizations of singularity categories and vanishing cycles, J. Éc. Polytech. Math., 5, 651-747, (2018) ·Zbl 1423.14151 |
[11] | Bondal, A. I.; Kapranov, M. M., Enhanced triangulated categories, Mat. Sb.. Mat. Sb., Math. USSR Sb., 70, 1, 93-107, (1991), translation: ·Zbl 0729.18008 |
[12] | Bondal, A. I.; Larsen, M.; Lunts, V. A., Grothendieck ring of pretriangulated categories, Int. Math. Res. Not., 29, 1461-1495, (2004) ·Zbl 1079.18008 |
[13] | Braun, C.; Chuang, J.; Lazarev, A., Derived localization of algebras and modules, Adv. Math., 328, 555-622, (2018) ·Zbl 1388.18023 |
[14] | Brown, M. K.; Dyckerhoff, T., Topological K-theory of equivariant singularity categories, Homol. Homotopy Appl., 22, 2, 1-29, (2020) ·Zbl 1440.14008 |
[15] | Buchweitz, R. O., Maximal Cohen-Macaulay Modules and Tate-Cohomology over Gorenstein Rings, Math. Surveys and Monographs, vol. 262, (2021), Amer. Math. Soc., with appendices by L.L. Avramov, B. Briggs, S.B. Iyengar, and J.C. Letz ·Zbl 1505.13002 |
[16] | Căldăraru, A.; Li, S.; Tu, J., Categorical primitive forms and Gromov-Witten invariants of \(A_n\) singularities, Int. Math. Res. Not., 24, 18489-18519, (2021) ·Zbl 1485.14104 |
[17] | Carlsen, T. M.; Ortega, E., Algebraic Cuntz-Pimsner rings, Proc. Lond. Math. Soc. (3), 103, 601-653, (2011) ·Zbl 1235.16005 |
[18] | Chen, X.; Chen, X. W., Liftable derived equivalences and objective categories, Bull. Lond. Math. Soc., 52, 816-834, (2020) ·Zbl 1457.18017 |
[19] | Chen, X. W., Relative singularity categories and Gorenstein-projective modules, Math. Nachr., 284, 2-3, 199-212, (2011) ·Zbl 1244.18014 |
[20] | Chen, X. W., The singularity category of an algebra with radical square zero, Doc. Math., 16, 921-936, (2011) ·Zbl 1255.18014 |
[21] | Chen, X. W.; Li, H.; Wang, Z., Leavitt path algebras, \( B_\infty \)-algebras and Keller’s conjecture for singular Hochschild cohomology, (2021) |
[22] | Chen, X. W.; Liu, J.; Wang, R., Singular equivalences induced by bimodules and quadratic monomial algebras, Algebr. Represent. Theory, 26, 609-630, (2023) ·Zbl 1519.18007 |
[23] | Chen, X. W.; Yang, D., Homotopy categories, Leavitt path algebras and Gorenstein projective modules, Int. Math. Res. Not., 10, 2597-2633, (2015) ·Zbl 1325.18002 |
[24] | Cohn, P. M., Some remarks on the invariant basis property, Topology, 5, 215-228, (1966) ·Zbl 0147.28802 |
[25] | Cohn, P. M., Free Rings and Their Relations, London Math. Soc. Monographs, vol. 19, (1985), Academic Press Inc.: Academic Press Inc. London ·Zbl 0659.16001 |
[26] | Cortiñas, G., Classifying Leavitt path algebras up to involution preserving homotopy, (2021) ·Zbl 1548.16027 |
[27] | Cortiñas, G.; Montero, D., Homotopy classification of Leavitt path algebras, Adv. Math., 362, Article 106961 pp., (2020) ·Zbl 1442.16030 |
[28] | Cortiñas, G.; Montero, D., Algebraic bivariant K-theory and Leavitt path algebras, J. Noncommut. Geom., 15, 1, 113-146, (2021) ·Zbl 1468.19008 |
[29] | Cuntz, J.; Quillen, D., Algebra extensions and nonsingularity, J. Am. Math. Soc., 8, 2, 251-289, (1995) ·Zbl 0838.19001 |
[30] | De Deken, O.; Lowen, W., On deformations of triangulated models, Adv. Math., 243, 330-374, (2013) ·Zbl 1296.18011 |
[31] | Drinfeld, V., DG quotients of DG categories, J. Algebra, 272, 2, 643-691, (2004) ·Zbl 1064.18009 |
[32] | Drozd, Y. A.; Kirichenko, V. V., Finite Dimensional Algebras, (1994), Springer-Verlag: Springer-Verlag Berlin Heidelberg, with an appendix by V. Dlab ·Zbl 0816.16001 |
[33] | Dyckerhoff, T., Compact generators in categories of matrix factorizations, Duke Math. J., 159, 2, 223-274, (2011) ·Zbl 1252.18026 |
[34] | Elagin, A.; Lunts, V. A., Derived categories of coherent sheaves on some zero-dimensional schemes, J. Pure Appl. Algebra, 226, 6, Article 106939 pp., (2022) ·Zbl 1495.14029 |
[35] | Elagin, A.; Lunts, V. A.; Schnuerer, O. M., Smoothness of derived categories of algebras, Mosc. Math. J., 20, 2, 277-309, (2020) ·Zbl 1468.16021 |
[36] | Gabriel, P.; Zisman, M., Calculus of Fractions and Homotopy Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 35, (1967), Springer-Verlag: Springer-Verlag New York Inc., New York ·Zbl 0186.56802 |
[37] | Happel, D., Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser., vol. 119, (1988), Cambridge Univ. Press: Cambridge Univ. Press Cambridge ·Zbl 0635.16017 |
[38] | Hazrat, R., The dynamics of Leavitt path algebras, J. Algebra, 384, 242-266, (2013) ·Zbl 1294.16005 |
[39] | Iovanov, M. C.; Sistko, A., On the Toeplitz-Jacobson algebra and direct finiteness, (Groups, Rings, Group Rings, and Hopf Algebras. Groups, Rings, Group Rings, and Hopf Algebras, Contemporary Math., vol. 688, (2017)), 113-124 ·Zbl 1370.16016 |
[40] | Keller, B., Deriving DG categories, Ann. Sci. Éc. Norm. Supér. (4), 27, 1, 63-102, (1994) ·Zbl 0799.18007 |
[41] | Keller, B., Invariance and localization for cyclic homology of dg algebras, J. Pure Appl. Algebra, 123, 223-273, (1998) ·Zbl 0890.18007 |
[42] | Keller, B., On the cyclic homology of exact categories, J. Pure Appl. Algebra, 136, 1, 1-56, (1999) ·Zbl 0923.19004 |
[43] | Keller, B., Introduction to A-infinity algebras and modules, Homol. Homotopy Appl., 3, 1-35, (2001) ·Zbl 0989.18009 |
[44] | Keller, B., Derived invariance of higher structures on the Hochschild complex, (2003), preprint, available at |
[45] | Keller, B., Koszul duality and coderived categories (after K. Lefèvre), (2003), preprint, available at |
[46] | Keller, B., On triangulated orbit categories, Doc. Math., 10, 551-581, (2005) ·Zbl 1086.18006 |
[47] | Keller, B., On differential graded categories, (International Congress of Mathematicians. Vol. II, (2006), Eur. Math. Soc.: Eur. Math. Soc. Zürich), 151-190 ·Zbl 1140.18008 |
[48] | Keller, B., Deformed Calabi-Yau completions, with an appendix by Michel Van den Bergh, J. Reine Angew. Math., 654, 125-180, (2011) ·Zbl 1220.18012 |
[49] | Keller, B., Singular Hochschild cohomology via the singularity category, C. R. Math. Acad. Sci. Paris. C. R. Math. Acad. Sci. Paris, C. R. Math. Acad. Sci. Paris, 357, 6, 533-536, (2020), See also ·Zbl 1432.16008 |
[50] | Keller, B.; Lowen, W., On Hochschild cohomology and Morita deformations, Int. Math. Res. Not., 2009, 17, 3221-3235, (2009) ·Zbl 1221.18014 |
[51] | Keller, B.; Lowen, W.; Nicolás, P., On the (non)vanishing of some “derived” categories of curved dg algebras, J. Pure Appl. Algebra, 214, 7, 1271-1284, (2010) ·Zbl 1238.16010 |
[52] | Krause, H., The stable derived category of a noetherian scheme, Compos. Math., 141, 5, 1128-1162, (2005) ·Zbl 1090.18006 |
[53] | Külshammer, J., In the bocs seat: quasi-hereditary algebras and representation type, (Representation Theory-Current Trends and Perspectives, (2017), Eur. Math. Soc. Publishing House), 375-426 ·Zbl 1380.16008 |
[54] | Leavitt, W. G., The module type of a ring, Trans. Am. Math. Soc., 103, 113-130, (1962) ·Zbl 0112.02701 |
[55] | Lefv̀re-Hasegawa, K., Sur les \(A_\infty \)-catégories, , (, N, o, v, e, m, b, e, r, , 2, 0, 0, 3, ), Université Denis Diderot: Université Denis Diderot Paris 7, Thèse de doctorat |
[56] | Li, H., The injective Leavitt complex, Algebr. Represent. Theory, 21, 4, 833-858, (2018) ·Zbl 1394.16014 |
[57] | Liu, Y.; Zhou, G.; Zimmermann, A., Higman ideal, stable Hochschild homology and Auslander-Reiten conjecture, Math. Z., 270, 759-781, (2012) ·Zbl 1261.16010 |
[58] | Lowen, W.; Van den Bergh, M., Hochschild cohomology of abelian categories and ringed spaces, Adv. Math., 198, 1, 172-221, (2005) ·Zbl 1095.13013 |
[59] | Lowen, W.; Van den Bergh, M., The curvature problem for formal and infinitesimal deformations, (2015) |
[60] | Lu, D. M.; Palmieri, J. H.; Wu, Q. S.; Zhang, J. J., A-infinity structure on Ext-algebras, J. Pure Appl. Algebra, 213, 11, 2017-2037, (2009) ·Zbl 1231.16008 |
[61] | Lunts, V. A.; Orlov, D., Uniqueness of enhancement for triangulated categories, J. Am. Math. Soc., 23, 3, 853-908, (2010) ·Zbl 1197.14014 |
[62] | Lunts, V. A.; Schnuerer, O. M., Matrix factorizations and motivic measures, J. Noncommut. Geom., 10, 3, 981-1042, (2016) ·Zbl 1362.14021 |
[63] | Lurie, J., Derived algebraic geometry X: formal moduli problems, (2011), preprint, available at |
[64] | Lurie, J., Higher algebra, (2017) |
[65] | Mac Lane, S., Homology, (1995), Springer-Verlag: Springer-Verlag Berlin Heidelburg ·Zbl 0818.18001 |
[66] | Neeman, A.; Ranicki, A., Noncommutative localisation in algebraic K-theory I, Geom. Topol., 8, 1385-1425, (2004) ·Zbl 1083.18007 |
[67] | Orlov, D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math., 246, 3, 227-248, (2004) ·Zbl 1101.81093 |
[68] | Rickard, J., Morita theory for derived categories, J. Lond. Math. Soc. (2), 39, 436-456, (1989) ·Zbl 0642.16034 |
[69] | Rickard, J., Derived categories and stable equivalence, J. Pure Appl. Algebra, 61, 303-317, (1989) ·Zbl 0685.16016 |
[70] | Schaps, M., Deformations of finite dimensional algebras and their idempotents, Trans. Am. Math. Soc., 307, 843-856, (1988) ·Zbl 0658.16017 |
[71] | Smith, S. P., Category equivalences involving graded modules over path algebras of quivers, Adv. Math., 230, 1780-1810, (2012) ·Zbl 1264.16042 |
[72] | Sweedler, M. E., The predual theorem to the Jacobson-Bourbaki theorem, Trans. Am. Math. Soc., 213, 391-406, (1975) ·Zbl 0317.16007 |
[73] | Tabuada, G., Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories, C. R. Math. Acad. Sci. Paris, 340, 1, 15-19, (2005) ·Zbl 1060.18010 |
[74] | Tabuada, G., Invariants additifs de dg-catégories, Int. Math. Res. Not., 53, 3309-3339, (2005) ·Zbl 1094.18006 |
[75] | Tabuada, G., On Drinfeld’s DG quotient, J. Algebra, 323, 1226-1240, (2010) ·Zbl 1244.14002 |
[76] | Terilla, J.; Tradler, T., Deformations of associative algebras with inner products, Homol. Homotopy Appl., 8, 2, 115-131, (2006) ·Zbl 1116.16032 |
[77] | Toën, B., The homotopy theory of dg-categories and derived Morita theory, Invent. Math., 167, 615-667, (2007) ·Zbl 1118.18010 |
[78] | Wang, Z., Equivalence singulière à la Morita et la cohomologie de Hochschild singulière, (2016), Université Paris: Université Paris Diderot-Paris 7, available at |
[79] | Wang, Z., Gerstenhaber algebra and Deligne’s conjecture on Tate-Hochschild cohomology, Trans. Am. Math. Soc., 374, 4537-4577, (2021) ·Zbl 1484.13038 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.