[1] | Agostiniani, V.; Fogagnolo, M.; Mazzieri, L., Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature, Invent. Math., 222, 1033-1101, (2020) ·Zbl 1467.53062 |
[2] | Ambrosio, L., Calculus, heat flow and curvature-dimension bounds in metric measure spaces, (Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. vol. I. Plenary Lectures, (2018), World Sci. Publ.: World Sci. Publ. Hackensack, NJ), 301-340 ·Zbl 1475.30129 |
[3] | Ambrosio, L.; Di Marino, S., Equivalent definitions of BV space and of total variation on metric measure spaces, J. Funct. Anal., 266, 4150-4188, (2014) ·Zbl 1302.26012 |
[4] | Ambrosio, L.; Gigli, N.; Mondino, A.; Rajala, T., Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure, Trans. Am. Math. Soc., 367, 4661-4701, (2012) ·Zbl 1317.53060 |
[5] | Ambrosio, L.; Gigli, N.; Savaré, G., Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam., 29, 969-996, (2013) ·Zbl 1287.46027 |
[6] | Ambrosio, L.; Gigli, N.; Savaré, G., Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 1405-1490, (2014) ·Zbl 1304.35310 |
[7] | Ambrosio, L.; Gigli, N.; Savaré, G., Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43, 339-404, (2015) ·Zbl 1307.49044 |
[8] | Ambrosio, L.; Honda, S., New stability results for sequences of metric measure spaces with uniform Ricci bounds from below, (Measure Theory in Non-smooth Spaces. Measure Theory in Non-smooth Spaces, Partial Differ. Equ. Meas. Theory, (2017), De Gruyter Open: De Gruyter Open Warsaw), 1-51 ·Zbl 1485.53051 |
[9] | Ambrosio, L.; Mondino, A.; Savaré, G., On the Bakry-Émery condition, the gradient estimates and the Local-to-Global property of \(R C D^\ast(K, N)\) metric measure spaces, J. Geom. Anal., 26, 1-33, (2014) |
[10] | Antonelli, G.; Bruè, E.; Fogagnolo, M.; Pozzetta, M., On the existence of isoperimetric regions in manifolds with nonnegative Ricci curvature and Euclidean volume growth, Calc. Var. Partial Differ. Equ., 61, Article 77 pp., (2022), 40 pp. ·Zbl 1494.53049 |
[11] | Antonelli, G.; Fogagnolo, M.; Pozzetta, M., The isoperimetric problem on Riemannian manifolds via Gromov-Hausdorff asymptotic analysis, Commun. Contemp. Math., (2022) |
[12] | Antonelli, G.; Nardulli, S.; Pozzetta, M., The isoperimetric problem via direct method in noncompact metric measure spaces with lower Ricci bounds, ESAIM Control Optim. Calc. Var., 28, Article 57 pp., (2022), 32 pp. ·Zbl 1498.53060 |
[13] | Antonelli, G.; Pasqualetto, E.; Pozzetta, M.; Semola, D., Asymptotic isoperimetry on non collapsed spaces with lower Ricci bounds, Math. Ann., (2023) |
[14] | Antonelli, G.; Pasqualetto, E.; Pozzetta, M.; Violo, I. Y., Topological regularity of isoperimetric sets in PI spaces having a deformation property, Proc. R. Soc. Edinb. Sect. A Math., (2023), published online |
[15] | Aubin, T., Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. (9), 55, 269-296, (1976) ·Zbl 0336.53033 |
[16] | Aubin, T., Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11, 573-598, (1976) ·Zbl 0371.46011 |
[17] | Aubin, T., Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Grundlehren der Mathematischen Wissenschaften, vol. 252, (1982), Springer-Verlag: Springer-Verlag New York ·Zbl 0512.53044 |
[18] | Bacher, K.; Sturm, K.-T., Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal., 259, 28-56, (2010) ·Zbl 1196.53027 |
[19] | Bakry, D., L’hypercontractivité et son utilisation en théorie des semigroupes, (Lectures on Probability Theory. Lectures on Probability Theory, Saint-Flour, 1992. Lectures on Probability Theory. Lectures on Probability Theory, Saint-Flour, 1992, Lecture Notes in Math., vol. 1581, (1994), Springer: Springer Berlin), 1-114 ·Zbl 0856.47026 |
[20] | Bakry, D.; Gentil, I.; Ledoux, M., Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften, vol. 348, (2014), Springer: Springer Cham ·Zbl 1376.60002 |
[21] | Bakry, D.; Ledoux, M., Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator, Duke Math. J., 85, 253-270, (1996) ·Zbl 0870.60071 |
[22] | Balogh, Z. M.; Kristály, A., Sharp isoperimetric and Sobolev inequalities in spaces with nonnegative Ricci curvature, Math. Ann., 385, 1747-1773, (2023) ·Zbl 1514.53079 |
[23] | Bérard, P.; Meyer, D., Inégalités isopérimétriques et applications, Ann. Sci. Ecole Norm. Sup. (4), 15, 513-541, (1982) ·Zbl 0527.35020 |
[24] | Bhakta, M.; Ganguly, D.; Karmakar, D.; Mazumdar, S., Sharp quantitative stability of Poincare-Sobolev inequality in the hyperbolic space and applications to fast diffusion flows, (2022) |
[25] | Bianchi, G.; Egnell, H., A note on the Sobolev inequality, J. Funct. Anal., 100, 18-24, (1991) ·Zbl 0755.46014 |
[26] | Björn, A.; Björn, J., Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics, vol. 17, (2011), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich ·Zbl 1231.31001 |
[27] | Bliss, G. A., An integral inequality, J. Lond. Math. Soc., 5, 40-46, (1930) ·JFM 56.0434.02 |
[28] | Brendle, S., Sobolev inequalities in manifolds with nonnegative curvature, Commun. Pure Appl. Math., (2021) |
[29] | Brendle, S.; Marques, F. C., Recent progress on the Yamabe problem, (Surveys in Geometric Analysis and Relativity. Surveys in Geometric Analysis and Relativity, Adv. Lect. Math. (ALM), vol. 20, (2011), Int. Press: Int. Press Somerville, MA), 29-47 ·Zbl 1268.53046 |
[30] | Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 486-490, (1983) ·Zbl 0526.46037 |
[31] | Brothers, J. E.; Ziemer, W. P., Minimal rearrangements of Sobolev functions, J. Reine Angew. Math., 384, 153-179, (1988) ·Zbl 0633.46030 |
[32] | Burago, D.; Burago, Y.; Ivanov, S., A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33, (2001), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 0981.51016 |
[33] | Cavalletti, F.; Manini, D., Rigidities of isoperimetric inequality under nonnegative Ricci curvature, (2022) |
[34] | Cavalletti, F.; Manini, D., Isoperimetric inequality in noncompact \(\mathsf{MCP}\) spaces, Proc. Am. Math. Soc., 150, 3537-3548, (2022) ·Zbl 1501.53054 |
[35] | Cavalletti, F.; Milman, E., The globalization theorem for the curvature-dimension condition, Invent. Math., 226, 1-137, (2021) ·Zbl 1479.53049 |
[36] | Cavalletti, F.; Mondino, A., Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds, Geom. Topol., 21, 603-645, (2017) ·Zbl 1357.49028 |
[37] | Cavalletti, F.; Mondino, A., New formulas for the Laplacian of distance functions and applications, Anal. PDE, 13, 2091-2147, (2020) ·Zbl 1462.49031 |
[38] | Cavalletti, F.; Mondino, A.; Semola, D., Quantitative Obata’s theorem, Anal. PDE, 16, 1389-1431, (2023) ·Zbl 1531.58011 |
[39] | Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 428-517, (1999) ·Zbl 0942.58018 |
[40] | Cianchi, A.; Fusco, N.; Maggi, F.; Pratelli, A., The sharp Sobolev inequality in quantitative form, J. Eur. Math. Soc., 11, 1105-1139, (2009) ·Zbl 1185.46025 |
[41] | Colding, T. H., Large manifolds with positive Ricci curvature, Invent. Math., 124, 193-214, (1996) ·Zbl 0871.53028 |
[42] | Debin, C.; Gigli, N.; Pasqualetto, E., Quasi-continuous vector fields on RCD spaces, Potential Anal., 54, 183-211, (2021) ·Zbl 1457.53032 |
[43] | Dolbeault, J.; Esteban, M. J., Improved interpolation inequalities and stability, Adv. Nonlinear Stud., 20, 277-291, (2020) ·Zbl 1437.26018 |
[44] | Dupaigne, L.; Gentil, I.; Zugmeyer, S., Sobolev’s inequality under a curvature-dimension condition, Ann. Fac. Sci. Toulouse Math. (6), 32, 125-144, (2023) ·Zbl 1522.35015 |
[45] | Engelstein, M.; Neumayer, R.; Spolaor, L., Quantitative stability for minimizing Yamabe metrics, Trans. Amer. Math. Soc. Ser. B, 9, 395-414, (2022) ·Zbl 1497.26021 |
[46] | Erbar, M.; Kuwada, K.; Sturm, K.-T., On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., 201, 1-79, (2014) |
[47] | Figalli, A.; Neumayer, R., Gradient stability for the Sobolev inequality: the case \(p \geq 2\), J. Eur. Math. Soc., 21, 319-354, (2019) ·Zbl 1417.46023 |
[48] | Figalli, A.; Zhang, Y. R.-Y., Sharp gradient stability for the Sobolev inequality, Duke Math. J., 171, 2407-2459, (2022) ·Zbl 1504.46040 |
[49] | Fogagnolo, M.; Mazzieri, L., Minimising hulls, p-capacity and isoperimetric inequality on complete Riemannian manifolds, J. Funct. Anal., 283, Article 109638 pp., (2022) ·Zbl 1495.49025 |
[50] | Fontenas, E., Sur les constantes de Sobolev des variétés riemanniennes compactes et les fonctions extrémales des sphères, Bull. Sci. Math., 121, 71-96, (1997) ·Zbl 0873.58027 |
[51] | Frank, R. L., Degenerate stability of some Sobolev inequalities, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 39, 1459-1484, (2022) ·Zbl 1515.39016 |
[52] | Gigli, N., On the heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. Partial Differ. Equ., 39, 101-120, (2010) ·Zbl 1200.35178 |
[53] | Gigli, N., An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature, Anal. Geom. Metric Spaces, 2, 169-213, (2014) ·Zbl 1310.53031 |
[54] | Gigli, N., On the differential structure of metric measure spaces and applications, Mem. Am. Math. Soc., 236, (2015), vi+91 pp. ·Zbl 1325.53054 |
[55] | Gigli, N., Nonsmooth differential geometry—an approach tailored for spaces with Ricci curvature bounded from below, Mem. Am. Math. Soc., 251, (2018), v+161 pp. ·Zbl 1404.53056 |
[56] | Gigli, N., On the regularity of harmonic maps from \(\mathsf{RCD}(K, N)\) to \(\mathsf{CAT}(0)\) spaces and related results, (2022) |
[57] | Gigli, N.; Han, B., Independence on p of weak upper gradients on RCD spaces, J. Funct. Anal., 271, (2014) |
[58] | Gigli, N.; Mondino, A.; Savaré, G., Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, Proc. Lond. Math. Soc., 3, 111, 1071-1129, (2015) ·Zbl 1398.53044 |
[59] | Gigli, N.; Pasqualetto, E., Lectures on Nonsmooth Differential Geometry, SISSA Springer Series, vol. 2, (2020) ·Zbl 1452.53002 |
[60] | Gigli, N.; Pasqualetto, E., Behaviour of the reference measure on \(\mathsf{RCD}\) spaces under charts, Commun. Anal. Geom., 29, 1391-1414, (2021) ·Zbl 1494.53050 |
[61] | Gigli, N.; Rigoni, C., A note about the strong maximum principle on RCD spaces, Can. Math. Bull., 62, 259-266, (2019) ·Zbl 1418.31014 |
[62] | Gigli, N.; Violo, I. Y., Monotonicity formulas for harmonic functions in \(\operatorname{RCD}(0, N)\) spaces, J. Geom. Anal., 33, Article 100 pp., (2023), 89 pp. ·Zbl 1539.53046 |
[63] | Grigor’yan, A.; Hu, J.; Lau, K.-S., Heat kernels on metric spaces with doubling measure, (Fractal Geometry and Stochastics IV. Fractal Geometry and Stochastics IV, Progr. Probab., vol. 61, (2009), Birkhäuser Verlag: Birkhäuser Verlag Basel), 3-44 ·Zbl 1197.35129 |
[64] | Gromov, M., Metric Structures for Riemannian and Non-Riemannian Spaces, Modern Birkhäuser Classics, (2007), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA, based on the 1981 French original, with appendices by M. Katz, P. Pansu and S. Semmes, translated from the French by Sean Michael Bates ·Zbl 1113.53001 |
[65] | Hajłasz, P.; Koskela, P., Sobolev met Poincaré, Mem. Am. Math. Soc., 145, (2000), x+101 pp. ·Zbl 0954.46022 |
[66] | Han, B.-X., Ricci tensor on \(\operatorname{RCD}^\ast(K, N)\) spaces, J. Geom. Anal., 28, 1295-1314, (2018) ·Zbl 1395.53046 |
[67] | Han, Q.; Lin, F., Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, vol. 1, (2011), Courant Institute of Mathematical Sciences/xAmerican Mathematical Society: Courant Institute of Mathematical Sciences/xAmerican Mathematical Society New York/Providence, RI ·Zbl 1210.35031 |
[68] | Hebey, E., Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Mathematics, vol. 5, (1999), New York University, Courant Institute of Mathematical Sciences/American Mathematical Society: New York University, Courant Institute of Mathematical Sciences/American Mathematical Society New York/Providence, RI |
[69] | Heinonen, J.; Koskela, P., From local to global in quasiconformal structures, Proc. Natl. Acad. Sci. USA, 93, 554-556, (1996) ·Zbl 0842.30016 |
[70] | Heinonen, J.; Koskela, P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181, 1-61, (1998) ·Zbl 0915.30018 |
[71] | Honda, S., Ricci curvature and \(L^p\)-convergence, J. Reine Angew. Math., 705, 85-154, (2015) ·Zbl 1338.53064 |
[72] | Ilias, S., Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes compactes, Ann. Inst. Fourier (Grenoble), 33, 151-165, (1983) ·Zbl 0528.53040 |
[73] | Jiang, R., Cheeger-harmonic functions in metric measure spaces revisited, J. Funct. Anal., 266, 1373-1394, (2014) ·Zbl 1295.30130 |
[74] | Johne, F., Sobolev inequalities on manifolds with nonnegative Bakry-Émery Ricci curvature, (2021), arXiv preprint |
[75] | Kell, M., A note on Lipschitz continuity of solutions of Poisson equations in metric measure spaces, (2013) |
[76] | Kesavan, S., Symmetrization & Applications, Series in Analysis, vol. 3, (2006), World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ ·Zbl 1110.35002 |
[77] | Ketterer, C., Obata’s rigidity theorem for metric measure spaces, Anal. Geom. Metric Spaces, 3, 278-295, (2015) ·Zbl 1327.53051 |
[78] | Lee, J. M.; Parker, T. H., The Yamabe problem, Bull. Am. Math. Soc. (N.S.), 17, 37-91, (1987) ·Zbl 0633.53062 |
[79] | Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math. (2), 118, 349-374, (1983) ·Zbl 0527.42011 |
[80] | Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, 109-145, (1984) ·Zbl 0541.49009 |
[81] | Lions, P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoam., 1, 145-201, (1985) ·Zbl 0704.49005 |
[82] | Lott, J.; Villani, C., Ricci curvature for metric-measure spaces via optimal transport, Ann. Math. (2), 169, 903-991, (2009) ·Zbl 1178.53038 |
[83] | Lou, H., On singular sets of local solutions to p-Laplace equations, Chin. Ann. Math., Ser. B, 29, 521-530, (2008) ·Zbl 1153.35044 |
[84] | Miranda, M., Functions of bounded variation on “good” metric spaces, J. Math. Pures Appl., 82, 975-1004, (2003) ·Zbl 1109.46030 |
[85] | Mondino, A.; Naber, A., Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc., 21, 1809-1854, (2019) ·Zbl 1468.53039 |
[86] | Mondino, A.; Semola, D., Polya-Szego inequality and Dirichlet p-spectral gap for non-smooth spaces with Ricci curvature bounded below, J. Math. Pures Appl., 9, 137, 238-274, (2020) ·Zbl 1443.58019 |
[87] | Neumayer, R., A note on strong-form stability for the Sobolev inequality, Calc. Var. Partial Differ. Equ., 59, Article 25 pp., (2020), 8 pp. ·Zbl 1440.46033 |
[88] | Nobili, F.; Violo, I. Y., Rigidity and almost rigidity of Sobolev inequalities on compact spaces with lower Ricci curvature bounds, Calc. Var. Partial Differ. Equ., 61, Article 180 pp., (2022) ·Zbl 1548.53053 |
[89] | Pólya, G.; Szegő, G., Isoperimetric Inequalities in Mathematical Physics (AM-27), (1951), Princeton University Press ·Zbl 0044.38301 |
[90] | Profeta, A., The sharp Sobolev inequality on metric measure spaces with lower Ricci curvature bounds, Potential Anal., 43, 513-529, (2015) ·Zbl 1333.53050 |
[91] | Rajala, T., Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differ. Equ., 44, 477-494, (2012) ·Zbl 1250.53040 |
[92] | Schoen, R., Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ. Geom., 20, 479-495, (1984) ·Zbl 0576.53028 |
[93] | Shanmugalingam, N., Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam., 16, 243-279, (2000) ·Zbl 0974.46038 |
[94] | Struwe, M., Variational Methods, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 34, (2008), Springer-Verlag: Springer-Verlag Berlin, Applications to nonlinear partial differential equations and Hamiltonian systems ·Zbl 1284.49004 |
[95] | Sturm, K.-T., On the geometry of metric measure spaces. I, Acta Math., 196, 65-131, (2006) ·Zbl 1105.53035 |
[96] | Sturm, K.-T., On the geometry of metric measure spaces. II, Acta Math., 196, 133-177, (2006) ·Zbl 1106.53032 |
[97] | Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110, 353-372, (1976) ·Zbl 0353.46018 |
[98] | Trudinger, N. S., Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3), 22, 265-274, (1968) ·Zbl 0159.23801 |
[99] | Yamabe, H., On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., 12, 21-37, (1960) ·Zbl 0096.37201 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.