Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Stability of Sobolev inequalities on Riemannian manifolds with Ricci curvature lower bounds.(English)Zbl 07811955

The authors study qualitative stability results for Sobolev inequalities on (smooth and non-smooth) spaces verifying lower Ricci curvature bounds.
The first main result states the following. Let \((M,g)\) be a closed \(n\)-dimensional Riemannian manifold (with \(n>2\)) satisfying \(\mathrm{Ric}_g\geq(n-1)g\), where \(\mathrm{Ric}_g\) denotes the Ricci tensor of \((M,g)\). Then the following Sobolev inequality holds:\[\|u\|_{L^{2^*}}^2\leq\frac{2^*-2}{n}\|\nabla u\|_{L^2}^2+\|u\|_{L^2}^2\quad\text{ for every }u\in W^{1,2}(M),\]where \(2^*:=\frac{2n}{n-2}\) denotes the Sobolev conjugate of \(2\) and the norms are computed with respect to the renormalized volume measure; see [S. Ilias, Ann. Inst. Fourier 33, No. 2, 151–165 (1983;Zbl 0528.53040)]. The authors prove that ‘functions that almost satisfy the equality in the Sobolev inequality are close to a spherical bubble’, i.e., to a function of the form\[w_{a,b,z}(\cdot):=\frac{a}{(1-b\cos(\mathsf{d}_g(\cdot,z)))^{\frac{n-2}{2}}} \quad\text{ for }a\in\mathbb R,\,b\in[0,1),\,z\in M,\]where \(\mathsf{d}_g\) denotes the distance induced by the metric \(g\). More precisely, Theorem 1.1 states that if \(\varepsilon>0\) is given and there exists a non-constant function \(u\in W^{1,2}(M)\) satisfying\[\frac{\|u\|_{L^{2^*}}^2-\|u\|_{L^2}^2}{\|\nabla u\|_{L^2}^2}>\frac{2^*-2}{n}-\delta\]for a suitable constant \(\delta>0\) that depends only on \(\varepsilon\) and \(n\), then there exist \(a\in\mathbb R\), \(b\in[0,1)\) and \(z\in M\) such that\[\frac{\|\nabla(u-w_{a,b,z})\|_{L^2}+\|u-w_{a,b,z}\|_{L^{2^*}}}{\|u\|_{L^2}}\leq\varepsilon.\]As an application of Theorem 1.1, the authors obtain in Corollary 1.3 a stability result for minimizing Yamabe metrics.

The second main result, Theorem 1.4, is a qualitative stability result for (non-compact) Riemannian manifolds of dimension \(n>2\) having non-negative Ricci curvature and Euclidean volume growth, the latter meaning that the asymptotic volume ratio\[\mathrm{AVR}(M):=\lim_{R\to\infty}\frac{\mathrm{Vol}_g(B(x,r))}{\omega_n R^n}\](which is independent of the chosen point \(x\in M\)) is strictly positive. The authors show, roughly speaking, that every non-zero function \(u\in\dot W^{1,2}(M)\) that almost satisfies the sharp Euclidean-type Sobolev inequality (see [Z. M. Balogh andA. Kristály, Math. Ann. 385, No. 3–4, 1747–1773 (2023;Zbl 1514.53079)]) is ‘close’ to a Euclidean bubble.
The above stability results are actually obtained in the more general setting of \(\mathsf{RCD}\) spaces, i.e., of metric measure spaces verifying synthetic lower Riemannian Ricci curvature bounds, see Theorems 8.1 and 8.4. In fact, possibly singular spaces have an essential role in the proof strategy of the main results. Indeed, the proof relies on a reductio ad absurdum argument, whose main ingredients are a generalized Lions’ concentration-compactness principle on varying spaces (where singular and non-compact limits may appear) and rigidity results for Sobolev inequalities on singular spaces.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

Cite

References:

[1]Agostiniani, V.; Fogagnolo, M.; Mazzieri, L., Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature, Invent. Math., 222, 1033-1101, (2020) ·Zbl 1467.53062
[2]Ambrosio, L., Calculus, heat flow and curvature-dimension bounds in metric measure spaces, (Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. vol. I. Plenary Lectures, (2018), World Sci. Publ.: World Sci. Publ. Hackensack, NJ), 301-340 ·Zbl 1475.30129
[3]Ambrosio, L.; Di Marino, S., Equivalent definitions of BV space and of total variation on metric measure spaces, J. Funct. Anal., 266, 4150-4188, (2014) ·Zbl 1302.26012
[4]Ambrosio, L.; Gigli, N.; Mondino, A.; Rajala, T., Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure, Trans. Am. Math. Soc., 367, 4661-4701, (2012) ·Zbl 1317.53060
[5]Ambrosio, L.; Gigli, N.; Savaré, G., Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam., 29, 969-996, (2013) ·Zbl 1287.46027
[6]Ambrosio, L.; Gigli, N.; Savaré, G., Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 1405-1490, (2014) ·Zbl 1304.35310
[7]Ambrosio, L.; Gigli, N.; Savaré, G., Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43, 339-404, (2015) ·Zbl 1307.49044
[8]Ambrosio, L.; Honda, S., New stability results for sequences of metric measure spaces with uniform Ricci bounds from below, (Measure Theory in Non-smooth Spaces. Measure Theory in Non-smooth Spaces, Partial Differ. Equ. Meas. Theory, (2017), De Gruyter Open: De Gruyter Open Warsaw), 1-51 ·Zbl 1485.53051
[9]Ambrosio, L.; Mondino, A.; Savaré, G., On the Bakry-Émery condition, the gradient estimates and the Local-to-Global property of \(R C D^\ast(K, N)\) metric measure spaces, J. Geom. Anal., 26, 1-33, (2014)
[10]Antonelli, G.; Bruè, E.; Fogagnolo, M.; Pozzetta, M., On the existence of isoperimetric regions in manifolds with nonnegative Ricci curvature and Euclidean volume growth, Calc. Var. Partial Differ. Equ., 61, Article 77 pp., (2022), 40 pp. ·Zbl 1494.53049
[11]Antonelli, G.; Fogagnolo, M.; Pozzetta, M., The isoperimetric problem on Riemannian manifolds via Gromov-Hausdorff asymptotic analysis, Commun. Contemp. Math., (2022)
[12]Antonelli, G.; Nardulli, S.; Pozzetta, M., The isoperimetric problem via direct method in noncompact metric measure spaces with lower Ricci bounds, ESAIM Control Optim. Calc. Var., 28, Article 57 pp., (2022), 32 pp. ·Zbl 1498.53060
[13]Antonelli, G.; Pasqualetto, E.; Pozzetta, M.; Semola, D., Asymptotic isoperimetry on non collapsed spaces with lower Ricci bounds, Math. Ann., (2023)
[14]Antonelli, G.; Pasqualetto, E.; Pozzetta, M.; Violo, I. Y., Topological regularity of isoperimetric sets in PI spaces having a deformation property, Proc. R. Soc. Edinb. Sect. A Math., (2023), published online
[15]Aubin, T., Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. (9), 55, 269-296, (1976) ·Zbl 0336.53033
[16]Aubin, T., Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11, 573-598, (1976) ·Zbl 0371.46011
[17]Aubin, T., Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Grundlehren der Mathematischen Wissenschaften, vol. 252, (1982), Springer-Verlag: Springer-Verlag New York ·Zbl 0512.53044
[18]Bacher, K.; Sturm, K.-T., Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal., 259, 28-56, (2010) ·Zbl 1196.53027
[19]Bakry, D., L’hypercontractivité et son utilisation en théorie des semigroupes, (Lectures on Probability Theory. Lectures on Probability Theory, Saint-Flour, 1992. Lectures on Probability Theory. Lectures on Probability Theory, Saint-Flour, 1992, Lecture Notes in Math., vol. 1581, (1994), Springer: Springer Berlin), 1-114 ·Zbl 0856.47026
[20]Bakry, D.; Gentil, I.; Ledoux, M., Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften, vol. 348, (2014), Springer: Springer Cham ·Zbl 1376.60002
[21]Bakry, D.; Ledoux, M., Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator, Duke Math. J., 85, 253-270, (1996) ·Zbl 0870.60071
[22]Balogh, Z. M.; Kristály, A., Sharp isoperimetric and Sobolev inequalities in spaces with nonnegative Ricci curvature, Math. Ann., 385, 1747-1773, (2023) ·Zbl 1514.53079
[23]Bérard, P.; Meyer, D., Inégalités isopérimétriques et applications, Ann. Sci. Ecole Norm. Sup. (4), 15, 513-541, (1982) ·Zbl 0527.35020
[24]Bhakta, M.; Ganguly, D.; Karmakar, D.; Mazumdar, S., Sharp quantitative stability of Poincare-Sobolev inequality in the hyperbolic space and applications to fast diffusion flows, (2022)
[25]Bianchi, G.; Egnell, H., A note on the Sobolev inequality, J. Funct. Anal., 100, 18-24, (1991) ·Zbl 0755.46014
[26]Björn, A.; Björn, J., Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics, vol. 17, (2011), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich ·Zbl 1231.31001
[27]Bliss, G. A., An integral inequality, J. Lond. Math. Soc., 5, 40-46, (1930) ·JFM 56.0434.02
[28]Brendle, S., Sobolev inequalities in manifolds with nonnegative curvature, Commun. Pure Appl. Math., (2021)
[29]Brendle, S.; Marques, F. C., Recent progress on the Yamabe problem, (Surveys in Geometric Analysis and Relativity. Surveys in Geometric Analysis and Relativity, Adv. Lect. Math. (ALM), vol. 20, (2011), Int. Press: Int. Press Somerville, MA), 29-47 ·Zbl 1268.53046
[30]Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 486-490, (1983) ·Zbl 0526.46037
[31]Brothers, J. E.; Ziemer, W. P., Minimal rearrangements of Sobolev functions, J. Reine Angew. Math., 384, 153-179, (1988) ·Zbl 0633.46030
[32]Burago, D.; Burago, Y.; Ivanov, S., A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33, (2001), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 0981.51016
[33]Cavalletti, F.; Manini, D., Rigidities of isoperimetric inequality under nonnegative Ricci curvature, (2022)
[34]Cavalletti, F.; Manini, D., Isoperimetric inequality in noncompact \(\mathsf{MCP}\) spaces, Proc. Am. Math. Soc., 150, 3537-3548, (2022) ·Zbl 1501.53054
[35]Cavalletti, F.; Milman, E., The globalization theorem for the curvature-dimension condition, Invent. Math., 226, 1-137, (2021) ·Zbl 1479.53049
[36]Cavalletti, F.; Mondino, A., Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds, Geom. Topol., 21, 603-645, (2017) ·Zbl 1357.49028
[37]Cavalletti, F.; Mondino, A., New formulas for the Laplacian of distance functions and applications, Anal. PDE, 13, 2091-2147, (2020) ·Zbl 1462.49031
[38]Cavalletti, F.; Mondino, A.; Semola, D., Quantitative Obata’s theorem, Anal. PDE, 16, 1389-1431, (2023) ·Zbl 1531.58011
[39]Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 428-517, (1999) ·Zbl 0942.58018
[40]Cianchi, A.; Fusco, N.; Maggi, F.; Pratelli, A., The sharp Sobolev inequality in quantitative form, J. Eur. Math. Soc., 11, 1105-1139, (2009) ·Zbl 1185.46025
[41]Colding, T. H., Large manifolds with positive Ricci curvature, Invent. Math., 124, 193-214, (1996) ·Zbl 0871.53028
[42]Debin, C.; Gigli, N.; Pasqualetto, E., Quasi-continuous vector fields on RCD spaces, Potential Anal., 54, 183-211, (2021) ·Zbl 1457.53032
[43]Dolbeault, J.; Esteban, M. J., Improved interpolation inequalities and stability, Adv. Nonlinear Stud., 20, 277-291, (2020) ·Zbl 1437.26018
[44]Dupaigne, L.; Gentil, I.; Zugmeyer, S., Sobolev’s inequality under a curvature-dimension condition, Ann. Fac. Sci. Toulouse Math. (6), 32, 125-144, (2023) ·Zbl 1522.35015
[45]Engelstein, M.; Neumayer, R.; Spolaor, L., Quantitative stability for minimizing Yamabe metrics, Trans. Amer. Math. Soc. Ser. B, 9, 395-414, (2022) ·Zbl 1497.26021
[46]Erbar, M.; Kuwada, K.; Sturm, K.-T., On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., 201, 1-79, (2014)
[47]Figalli, A.; Neumayer, R., Gradient stability for the Sobolev inequality: the case \(p \geq 2\), J. Eur. Math. Soc., 21, 319-354, (2019) ·Zbl 1417.46023
[48]Figalli, A.; Zhang, Y. R.-Y., Sharp gradient stability for the Sobolev inequality, Duke Math. J., 171, 2407-2459, (2022) ·Zbl 1504.46040
[49]Fogagnolo, M.; Mazzieri, L., Minimising hulls, p-capacity and isoperimetric inequality on complete Riemannian manifolds, J. Funct. Anal., 283, Article 109638 pp., (2022) ·Zbl 1495.49025
[50]Fontenas, E., Sur les constantes de Sobolev des variétés riemanniennes compactes et les fonctions extrémales des sphères, Bull. Sci. Math., 121, 71-96, (1997) ·Zbl 0873.58027
[51]Frank, R. L., Degenerate stability of some Sobolev inequalities, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 39, 1459-1484, (2022) ·Zbl 1515.39016
[52]Gigli, N., On the heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. Partial Differ. Equ., 39, 101-120, (2010) ·Zbl 1200.35178
[53]Gigli, N., An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature, Anal. Geom. Metric Spaces, 2, 169-213, (2014) ·Zbl 1310.53031
[54]Gigli, N., On the differential structure of metric measure spaces and applications, Mem. Am. Math. Soc., 236, (2015), vi+91 pp. ·Zbl 1325.53054
[55]Gigli, N., Nonsmooth differential geometry—an approach tailored for spaces with Ricci curvature bounded from below, Mem. Am. Math. Soc., 251, (2018), v+161 pp. ·Zbl 1404.53056
[56]Gigli, N., On the regularity of harmonic maps from \(\mathsf{RCD}(K, N)\) to \(\mathsf{CAT}(0)\) spaces and related results, (2022)
[57]Gigli, N.; Han, B., Independence on p of weak upper gradients on RCD spaces, J. Funct. Anal., 271, (2014)
[58]Gigli, N.; Mondino, A.; Savaré, G., Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, Proc. Lond. Math. Soc., 3, 111, 1071-1129, (2015) ·Zbl 1398.53044
[59]Gigli, N.; Pasqualetto, E., Lectures on Nonsmooth Differential Geometry, SISSA Springer Series, vol. 2, (2020) ·Zbl 1452.53002
[60]Gigli, N.; Pasqualetto, E., Behaviour of the reference measure on \(\mathsf{RCD}\) spaces under charts, Commun. Anal. Geom., 29, 1391-1414, (2021) ·Zbl 1494.53050
[61]Gigli, N.; Rigoni, C., A note about the strong maximum principle on RCD spaces, Can. Math. Bull., 62, 259-266, (2019) ·Zbl 1418.31014
[62]Gigli, N.; Violo, I. Y., Monotonicity formulas for harmonic functions in \(\operatorname{RCD}(0, N)\) spaces, J. Geom. Anal., 33, Article 100 pp., (2023), 89 pp. ·Zbl 1539.53046
[63]Grigor’yan, A.; Hu, J.; Lau, K.-S., Heat kernels on metric spaces with doubling measure, (Fractal Geometry and Stochastics IV. Fractal Geometry and Stochastics IV, Progr. Probab., vol. 61, (2009), Birkhäuser Verlag: Birkhäuser Verlag Basel), 3-44 ·Zbl 1197.35129
[64]Gromov, M., Metric Structures for Riemannian and Non-Riemannian Spaces, Modern Birkhäuser Classics, (2007), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA, based on the 1981 French original, with appendices by M. Katz, P. Pansu and S. Semmes, translated from the French by Sean Michael Bates ·Zbl 1113.53001
[65]Hajłasz, P.; Koskela, P., Sobolev met Poincaré, Mem. Am. Math. Soc., 145, (2000), x+101 pp. ·Zbl 0954.46022
[66]Han, B.-X., Ricci tensor on \(\operatorname{RCD}^\ast(K, N)\) spaces, J. Geom. Anal., 28, 1295-1314, (2018) ·Zbl 1395.53046
[67]Han, Q.; Lin, F., Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, vol. 1, (2011), Courant Institute of Mathematical Sciences/xAmerican Mathematical Society: Courant Institute of Mathematical Sciences/xAmerican Mathematical Society New York/Providence, RI ·Zbl 1210.35031
[68]Hebey, E., Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Mathematics, vol. 5, (1999), New York University, Courant Institute of Mathematical Sciences/American Mathematical Society: New York University, Courant Institute of Mathematical Sciences/American Mathematical Society New York/Providence, RI
[69]Heinonen, J.; Koskela, P., From local to global in quasiconformal structures, Proc. Natl. Acad. Sci. USA, 93, 554-556, (1996) ·Zbl 0842.30016
[70]Heinonen, J.; Koskela, P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181, 1-61, (1998) ·Zbl 0915.30018
[71]Honda, S., Ricci curvature and \(L^p\)-convergence, J. Reine Angew. Math., 705, 85-154, (2015) ·Zbl 1338.53064
[72]Ilias, S., Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes compactes, Ann. Inst. Fourier (Grenoble), 33, 151-165, (1983) ·Zbl 0528.53040
[73]Jiang, R., Cheeger-harmonic functions in metric measure spaces revisited, J. Funct. Anal., 266, 1373-1394, (2014) ·Zbl 1295.30130
[74]Johne, F., Sobolev inequalities on manifolds with nonnegative Bakry-Émery Ricci curvature, (2021), arXiv preprint
[75]Kell, M., A note on Lipschitz continuity of solutions of Poisson equations in metric measure spaces, (2013)
[76]Kesavan, S., Symmetrization & Applications, Series in Analysis, vol. 3, (2006), World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ ·Zbl 1110.35002
[77]Ketterer, C., Obata’s rigidity theorem for metric measure spaces, Anal. Geom. Metric Spaces, 3, 278-295, (2015) ·Zbl 1327.53051
[78]Lee, J. M.; Parker, T. H., The Yamabe problem, Bull. Am. Math. Soc. (N.S.), 17, 37-91, (1987) ·Zbl 0633.53062
[79]Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math. (2), 118, 349-374, (1983) ·Zbl 0527.42011
[80]Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, 109-145, (1984) ·Zbl 0541.49009
[81]Lions, P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoam., 1, 145-201, (1985) ·Zbl 0704.49005
[82]Lott, J.; Villani, C., Ricci curvature for metric-measure spaces via optimal transport, Ann. Math. (2), 169, 903-991, (2009) ·Zbl 1178.53038
[83]Lou, H., On singular sets of local solutions to p-Laplace equations, Chin. Ann. Math., Ser. B, 29, 521-530, (2008) ·Zbl 1153.35044
[84]Miranda, M., Functions of bounded variation on “good” metric spaces, J. Math. Pures Appl., 82, 975-1004, (2003) ·Zbl 1109.46030
[85]Mondino, A.; Naber, A., Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc., 21, 1809-1854, (2019) ·Zbl 1468.53039
[86]Mondino, A.; Semola, D., Polya-Szego inequality and Dirichlet p-spectral gap for non-smooth spaces with Ricci curvature bounded below, J. Math. Pures Appl., 9, 137, 238-274, (2020) ·Zbl 1443.58019
[87]Neumayer, R., A note on strong-form stability for the Sobolev inequality, Calc. Var. Partial Differ. Equ., 59, Article 25 pp., (2020), 8 pp. ·Zbl 1440.46033
[88]Nobili, F.; Violo, I. Y., Rigidity and almost rigidity of Sobolev inequalities on compact spaces with lower Ricci curvature bounds, Calc. Var. Partial Differ. Equ., 61, Article 180 pp., (2022) ·Zbl 1548.53053
[89]Pólya, G.; Szegő, G., Isoperimetric Inequalities in Mathematical Physics (AM-27), (1951), Princeton University Press ·Zbl 0044.38301
[90]Profeta, A., The sharp Sobolev inequality on metric measure spaces with lower Ricci curvature bounds, Potential Anal., 43, 513-529, (2015) ·Zbl 1333.53050
[91]Rajala, T., Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differ. Equ., 44, 477-494, (2012) ·Zbl 1250.53040
[92]Schoen, R., Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ. Geom., 20, 479-495, (1984) ·Zbl 0576.53028
[93]Shanmugalingam, N., Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam., 16, 243-279, (2000) ·Zbl 0974.46038
[94]Struwe, M., Variational Methods, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 34, (2008), Springer-Verlag: Springer-Verlag Berlin, Applications to nonlinear partial differential equations and Hamiltonian systems ·Zbl 1284.49004
[95]Sturm, K.-T., On the geometry of metric measure spaces. I, Acta Math., 196, 65-131, (2006) ·Zbl 1105.53035
[96]Sturm, K.-T., On the geometry of metric measure spaces. II, Acta Math., 196, 133-177, (2006) ·Zbl 1106.53032
[97]Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110, 353-372, (1976) ·Zbl 0353.46018
[98]Trudinger, N. S., Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3), 22, 265-274, (1968) ·Zbl 0159.23801
[99]Yamabe, H., On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., 12, 21-37, (1960) ·Zbl 0096.37201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp