[1] | Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions, (1968), Dover Publications, Inc.: Dover Publications, Inc. New York |
[2] | Baik, J.; Buckingham, R.; DiFranco, J., Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function, Commun. Math. Phys., 280, 463-497, (2008) ·Zbl 1221.33032 |
[3] | Baik, J.; Deift, P.; Johansson, K., On the distribution of the length of the longest increasing subsequence of random permutations, J. Am. Math. Soc., 12, 1119-1178, (1999) ·Zbl 0932.05001 |
[4] | Blackstone, E.; Charlier, C.; Lenells, J., Oscillatory asymptotics for the Airy kernel determinant on two intervals, Int. Math. Res. Not., 2636-2687, (2022) ·Zbl 1498.60178 |
[5] | Blackstone, E.; Charlier, C.; Lenells, J., Gap probabilities in the bulk of the Airy process, Random Matrices: Theory Appl., 11, Article 2250022 pp., (2022), 30 pp. ·Zbl 1503.60056 |
[6] | Blackstone, E.; Charlier, C.; Lenells, J., The Bessel kernel determinant on large intervals and Birkhoff’s ergodic theorem ·Zbl 1529.37005 |
[7] | Carlson, B. C., A hypergeometric mean value, Proc. Am. Math. Soc., 16, 759-766, (1965) ·Zbl 0137.26802 |
[8] | Claeys, T.; Its, A.; Krasovsky, I., Higher-order analogues of the Tracy-Widom distribution and the Painleve II hierarchy, Commun. Pure Appl. Math., 63, 362-412, (2009) ·Zbl 1198.34191 |
[9] | des Cloizeaux, J.; Mehta, M. L., Asymptotic behaviour of spacing distributions for the eigenvalues of random matrices, J. Math. Phys., 14, 1648-1650, (1973) ·Zbl 0268.60058 |
[10] | Deift, P., Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes in Mathematics, (1999) |
[11] | Deift, P.; Its, A.; Zhou, X., A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics, Ann. Math., 146, 149-234, (1997) ·Zbl 0936.47028 |
[12] | Deift, P.; Its, A.; Krasovsky, I., Asymptotics of the Airy-kernel determinant, Commun. Math. Phys., 278, 643-678, (2008) ·Zbl 1167.15005 |
[13] | Deift, P.; Its, A.; Krasovsky, I., Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model. Some history and some recent results, Commun. Pure Appl. Math., 66, 1360-1438, (2013) ·Zbl 1292.47016 |
[14] | Deift, P.; Its, A.; Krasovsky, I.; Zhou, X., The Widom-Dyson constant for the gap probability in random matrix theory, J. Comput. Appl. Math., 202, 26-47, (2007) ·Zbl 1116.15019 |
[15] | Deift, P.; Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math., 137, 295-368, (1993) ·Zbl 0771.35042 |
[16] | Dyson, F., Statistical theory of the energy levels of complex systems. II, J. Math. Phys., 3, 157-165, (1962) ·Zbl 0105.41604 |
[17] | Dyson, F., Fredholm determinants and inverse scattering problems, Commun. Math. Phys., 47, 171-183, (1976) ·Zbl 0323.33008 |
[18] | Ehrhardt, T., Dyson’s constants in the asymptotics of the determinants of Wiener-Hopf-Hankel operators with the sine kernel, Commun. Math. Phys., 272, 683-698, (2007) ·Zbl 1135.47023 |
[19] | Fahs, B.; Krasovsky, I., Sine-kernel determinant on two large intervals, Commun. Pure Appl. Math., 77, 1958-2029, (2024) ·Zbl 1528.60011 |
[20] | Farkas, H. M.; Rauch, H. E., Period relations of Schottky type on Riemann surfaces, Ann. Math., 92, 434-461, (1970) ·Zbl 0204.09602 |
[21] | Krasovsky, I., Gap probability in the spectrum of random matrices and asymptotics of polynomials orthogonal on an arc of the unit circle, Int. Math. Res. Not., 2004, 1249-1272, (2004) ·Zbl 1077.60079 |
[22] | Kuijlaars, A. B.J.; McLaughlin, K. T-R.; Van Assche, W.; Vanlessen, M., The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on \([- 1, 1]\), Adv. Math., 188, 337-398, (2004) ·Zbl 1082.42017 |
[23] | Mehta, M. L., Random Matrices, (2004), Academic Press ·Zbl 1107.15019 |
[24] | Neuman, E., Bounds for symmetric elliptic integrals, J. Approx. Theory, 122, 249-259, (2003) ·Zbl 1041.33015 |
[25] | Tracy, C. A.; Widom, H., Level-spacing distributions and the Airy kernel, Commun. Math. Phys., 159, 151-174, (1994) ·Zbl 0789.35152 |
[26] | Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis, (1996), Cambridge University Press ·Zbl 0951.30002 |
[27] | Widom, H., The asymptotics of a continuous analogue of orthogonal polynomials, J. Approx. Theory, 77, 51-64, (1994) ·Zbl 0801.42017 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.