Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Airy-kernel determinant on two large intervals.(English)Zbl 07811946

Summary: We find the probability of two gaps of the form \((s c, s b) \cup(s a, + \infty)\), \(c < b < a < 0\), for large \(s > 0\), in the edge scaling limit of the Gaussian Unitary Ensemble, including the multiplicative constant in the asymptotics.

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
60B20 Random matrices (probabilistic aspects)

Cite

References:

[1]Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions, (1968), Dover Publications, Inc.: Dover Publications, Inc. New York
[2]Baik, J.; Buckingham, R.; DiFranco, J., Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function, Commun. Math. Phys., 280, 463-497, (2008) ·Zbl 1221.33032
[3]Baik, J.; Deift, P.; Johansson, K., On the distribution of the length of the longest increasing subsequence of random permutations, J. Am. Math. Soc., 12, 1119-1178, (1999) ·Zbl 0932.05001
[4]Blackstone, E.; Charlier, C.; Lenells, J., Oscillatory asymptotics for the Airy kernel determinant on two intervals, Int. Math. Res. Not., 2636-2687, (2022) ·Zbl 1498.60178
[5]Blackstone, E.; Charlier, C.; Lenells, J., Gap probabilities in the bulk of the Airy process, Random Matrices: Theory Appl., 11, Article 2250022 pp., (2022), 30 pp. ·Zbl 1503.60056
[6]Blackstone, E.; Charlier, C.; Lenells, J., The Bessel kernel determinant on large intervals and Birkhoff’s ergodic theorem ·Zbl 1529.37005
[7]Carlson, B. C., A hypergeometric mean value, Proc. Am. Math. Soc., 16, 759-766, (1965) ·Zbl 0137.26802
[8]Claeys, T.; Its, A.; Krasovsky, I., Higher-order analogues of the Tracy-Widom distribution and the Painleve II hierarchy, Commun. Pure Appl. Math., 63, 362-412, (2009) ·Zbl 1198.34191
[9]des Cloizeaux, J.; Mehta, M. L., Asymptotic behaviour of spacing distributions for the eigenvalues of random matrices, J. Math. Phys., 14, 1648-1650, (1973) ·Zbl 0268.60058
[10]Deift, P., Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes in Mathematics, (1999)
[11]Deift, P.; Its, A.; Zhou, X., A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics, Ann. Math., 146, 149-234, (1997) ·Zbl 0936.47028
[12]Deift, P.; Its, A.; Krasovsky, I., Asymptotics of the Airy-kernel determinant, Commun. Math. Phys., 278, 643-678, (2008) ·Zbl 1167.15005
[13]Deift, P.; Its, A.; Krasovsky, I., Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model. Some history and some recent results, Commun. Pure Appl. Math., 66, 1360-1438, (2013) ·Zbl 1292.47016
[14]Deift, P.; Its, A.; Krasovsky, I.; Zhou, X., The Widom-Dyson constant for the gap probability in random matrix theory, J. Comput. Appl. Math., 202, 26-47, (2007) ·Zbl 1116.15019
[15]Deift, P.; Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math., 137, 295-368, (1993) ·Zbl 0771.35042
[16]Dyson, F., Statistical theory of the energy levels of complex systems. II, J. Math. Phys., 3, 157-165, (1962) ·Zbl 0105.41604
[17]Dyson, F., Fredholm determinants and inverse scattering problems, Commun. Math. Phys., 47, 171-183, (1976) ·Zbl 0323.33008
[18]Ehrhardt, T., Dyson’s constants in the asymptotics of the determinants of Wiener-Hopf-Hankel operators with the sine kernel, Commun. Math. Phys., 272, 683-698, (2007) ·Zbl 1135.47023
[19]Fahs, B.; Krasovsky, I., Sine-kernel determinant on two large intervals, Commun. Pure Appl. Math., 77, 1958-2029, (2024) ·Zbl 1528.60011
[20]Farkas, H. M.; Rauch, H. E., Period relations of Schottky type on Riemann surfaces, Ann. Math., 92, 434-461, (1970) ·Zbl 0204.09602
[21]Krasovsky, I., Gap probability in the spectrum of random matrices and asymptotics of polynomials orthogonal on an arc of the unit circle, Int. Math. Res. Not., 2004, 1249-1272, (2004) ·Zbl 1077.60079
[22]Kuijlaars, A. B.J.; McLaughlin, K. T-R.; Van Assche, W.; Vanlessen, M., The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on \([- 1, 1]\), Adv. Math., 188, 337-398, (2004) ·Zbl 1082.42017
[23]Mehta, M. L., Random Matrices, (2004), Academic Press ·Zbl 1107.15019
[24]Neuman, E., Bounds for symmetric elliptic integrals, J. Approx. Theory, 122, 249-259, (2003) ·Zbl 1041.33015
[25]Tracy, C. A.; Widom, H., Level-spacing distributions and the Airy kernel, Commun. Math. Phys., 159, 151-174, (1994) ·Zbl 0789.35152
[26]Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis, (1996), Cambridge University Press ·Zbl 0951.30002
[27]Widom, H., The asymptotics of a continuous analogue of orthogonal polynomials, J. Approx. Theory, 77, 51-64, (1994) ·Zbl 0801.42017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp