[1] | Akcoglu, M. A., A pointwise ergodic theorem in \(L_p\)-spaces, Can. J. Math., 27, 5, 1075-1082 (1975) ·Zbl 0326.47005 |
[2] | Akcoglu, M. A.; Sucheston, L., Dilations of positive contractions on \(L_p\)-spaces, Can. Math. Bull., 20, 3, 285-292 (1977) ·Zbl 0381.47004 |
[3] | Anantharaman-Delaroche, C., On ergodic theorems for free group actions on noncommutative spaces, Probab. Theory Relat. Fields, 135, 4, 520-546 (2006) ·Zbl 1106.46047 |
[4] | Arhancet, C., On Matsaev’s conjecture for contractions on noncommutative \(L_p\)-spaces, J. Oper. Theory, 69, 2, 387-421 (2013) ·Zbl 1299.46072 |
[5] | Arhancet, C., Dilations of semigroups on von Neumann algebras and noncommutative \(L_p\)-spaces, J. Funct. Anal., 276, 7, 2279-2314 (2019) ·Zbl 07026816 |
[6] | Arhancet, C., Dilations of Markovian semigroups of Fourier multipliers on locally compact groups, Proc. Am. Math. Soc., 148, 2551-2563 (2020) ·Zbl 1443.47008 |
[7] | Arhancet, C., Dilations of Markovian semigroups of measurable Schur multipliers, Can. J. Math. (2024), to appear, see also ·Zbl 07852833 |
[8] | Arhancet, C.; Fackler, S.; Le Merdy, C., Isometric dilations and \(H^\infty \)-calculus for bounded analytic semigroups and Ritt operators, Trans. Am. Math. Soc., 369, 10, 6899-6933 (2017) ·Zbl 1369.47017 |
[9] | Arhancet, C.; Kriegler, C., Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers, Lecture Notes in Math., vol. 2304 (2022), Springer: Springer Cham, xii+278 pp. ·Zbl 1493.42001 |
[10] | Bukhvalov, A. V., The analytic representation of operators with an abstract norm, Izv. Vysš. Učebn. Zaved., Mat., 11, 21-32 (1975), (Russian) ·Zbl 0325.47025 |
[11] | Bukhvalov, A. V., Hardy spaces of vector-valued functions, Zap. Nauč. Semin. Leningr. Otdel. Mat. Inst. Steklov (LOMI), 65, 5-16 (1976), (Russian) ·Zbl 0345.46035 |
[12] | Clément, P.; Prüss, J., Completely positive measures and Feller semigroups, Math. Ann., 287, 1, 73-105 (1990) ·Zbl 0717.47013 |
[13] | Cohen, G.; Cuny, C.; Lin, M., Almost everywhere convergence of powers of some positive \(L_p\)-contractions, J. Math. Anal. Appl., 420, 2, 1129-1153 (2014) ·Zbl 1294.47011 |
[14] | Coine, C.; Le Merdy, C.; Sukochev, F., When do triple operator integrals take value in the trace class?, Ann. Inst. Fourier (Grenoble), 71, 4, 1393-1448 (2021) ·Zbl 07492542 |
[15] | Conde-Alonso, J. M.; González-Pérez, A. M.; Parcet, J.; Tablate, E., Schur multipliers in Schatten-von Neumann classes, Ann. Math. (2024), to appear, see also |
[16] | Conway, J. B., A Course in Operator Theory, Graduate Studies in Mathematics, vol. 21 (2000), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI, xvi+372 pp. ·Zbl 0936.47001 |
[17] | Conway, J. B., A Course in Functional Analysis, Graduate Texts in Math., vol. 96 (1990), Springer-Verlag: Springer-Verlag New York, xvi+399 pp. ·Zbl 0706.46003 |
[18] | Cowling, M., Harmonic analysis on semigroups, Ann. Math. (2), 117, 2, 267-283 (1983) ·Zbl 0528.42006 |
[19] | Diestel, J.; Uhl, J. J., Vector Measures, Mathematical Surveys, vol. 15 (1977), American Mathematical Society ·Zbl 0369.46039 |
[20] | Dunford, N.; Pettis, B. J., Linear operations on summable functions, Trans. Am. Math. Soc., 47, 323-392 (1940) ·JFM 66.0556.01 |
[21] | Duquet, C., Dilation properties of measurable Schur multipliers and Fourier multipliers, Positivity, 26, 4 (2022), Paper No. 69, 41 pp. ·Zbl 1511.47010 |
[22] | Effros, E. G.; Kraus, J.; Ruan, Z.-J., On two quantized tensor products, (Operator Algebras, Mathematical Physics, and Low-Dimensional Topology. Operator Algebras, Mathematical Physics, and Low-Dimensional Topology, Istanbul, 1991. Operator Algebras, Mathematical Physics, and Low-Dimensional Topology. Operator Algebras, Mathematical Physics, and Low-Dimensional Topology, Istanbul, 1991, Res. Notes Math., vol. 5 (1993), A K Peters: A K Peters Wellesley, MA), 125-145 ·Zbl 0823.46055 |
[23] | Fack, T.; Kosaki, H., Generalized s-numbers of τ-measurable operators, Pac. J. Math., 123, 2, 269-300 (1986) ·Zbl 0617.46063 |
[24] | U. Haagerup, Decomposition of completely bounded maps on operator algebras, Unpublished, Odense University, Denmark, 1980. |
[25] | Haagerup, U.; Musat, M., Factorization and dilation problems for completely positive maps on von Neumann algebras, Commun. Math. Phys., 303, 2, 555-594 (2011) ·Zbl 1220.46044 |
[26] | Hiai, F., Lectures on Selected Topics in von Neumann Algebras, EMS Series of Lectures in Mathematics (2021), EMS Press: EMS Press Berlin, viii+241 pp. ·Zbl 1479.46002 |
[27] | Hieber, M.; Prüss, J., Functional calculi for linear operators in vector-valued \(L_p\)-spaces via the transference principle, Adv. Differ. Equ., 3, 6, 847-872 (1998) ·Zbl 0956.47008 |
[28] | Hong, G.; Ray, S.; Wang, S., Maximal ergodic inequalities for some positive operators on noncommutative \(L_p\)-spaces, J. Lond. Math. Soc. (2), 108, 1, 362-408 (2023) ·Zbl 1531.46045 |
[29] | Hytönen, T.; van Neerven, J.; Veraar, M.; Weis, L., Analysis in Banach spaces, Vol. II, Probabilistic Methods and Operator Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 67 (2017), Springer: Springer Cham, xxi+616 pp. ·Zbl 1402.46002 |
[30] | Junge, M.; Le Merdy, C., Dilations and rigid factorisations on noncommutative \(L_p\)-spaces, J. Funct. Anal., 249, 1, 220-252 (2007) ·Zbl 1155.46029 |
[31] | Junge, M.; Le Merdy, C.; Xu, Q., \( H^\infty \)-functional calculus and square functions on noncommutative \(L_p\)-spaces, Astérisque, 305 (2006), vi+138 pp. ·Zbl 1106.47002 |
[32] | Junge, M.; Mei, T.; Parcet, J., An Invitation to Harmonic Analysis Associated with Semigroups of Operators, Contemp. Math., vol. 612, 107-122 (2014), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1305.42013 |
[33] | M. Junge, É. Ricard, D. Shlyakhtenko, Noncommutative diffusion semigroups and free probability, in press. |
[34] | Junge, M.; Xu, Q., Noncommutative maximal ergodic theorems, J. Am. Math. Soc., 20, 2, 385-439 (2007) ·Zbl 1116.46053 |
[35] | Kadison, R. V.; Ringrose, J. R., Fundamentals of the Theory of Operator Algebras, Vol. II, Advanced Theory, Graduate Studies in Mathematics, vol. 16 (1997), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI, pp. i-xxii and 399-1074 ·Zbl 0991.46031 |
[36] | Kosaki, H., Applications of the complex interpolation method to a von Neumann algebra: non-commutative Lp-spaces, J. Funct. Anal., 56, 29-78 (1984) ·Zbl 0604.46063 |
[37] | Kümmerer, B., Markov dilations on \(W^\ast \)-algebras, J. Funct. Anal., 63, 2, 139-177 (1985) ·Zbl 0601.46062 |
[38] | Kunstmann, P. C.; Weis, L., Maximal \(L_p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \)-functional calculus, (Functional Analytic Methods for Evolution Equations. Functional Analytic Methods for Evolution Equations, Lecture Notes in Math., vol. 1855 (2004), Springer: Springer Berlin), 65-311 ·Zbl 1097.47041 |
[39] | Lafforgue, V.; de la Salle, M., Noncommutative \(L_p\)-spaces without the completely bounded approximation property, Duke Math. J., 160, 1, 71-116 (2011) ·Zbl 1267.46072 |
[40] | Le Merdy, C., \( H^\infty\) functional calculus and square function estimates for Ritt operators, Rev. Mat. Iberoam., 30, 4, 1149-1190 (2014) ·Zbl 1317.47021 |
[41] | Le Merdy, C.; Xu, Q., Maximal theorems and square functions for analytic operators on \(L_p\)-spaces, J. Lond. Math. Soc. (2), 86, 2, 343-365 (2012) ·Zbl 1264.47036 |
[42] | Parcet, J.; Ricard, É.; de la Salle, M., Fourier multipliers in \(S L_n(\mathbb{R})\), Duke Math. J., 171, 6, 1235-1297 (2022) ·Zbl 1511.46041 |
[43] | Paulsen, V. I., Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advanced Mathematics, vol. 78 (2002), Cambridge University Press: Cambridge University Press Cambridge, xii+300 pp. ·Zbl 1029.47003 |
[44] | Peller, V. V., Hankel operators in the theory of perturbations of unitary and selfadjoint operators, Funkc. Anal. Prilozh., 19, 2, 37-51 (1985), (Russian) ·Zbl 0587.47016 |
[45] | Peller, V. V., Multiple operator integrals in perturbation theory, Bull. Math. Sci., 6, 1, 15-88 (2016) ·Zbl 1348.46048 |
[46] | Pisier, G., Similarity Problems and Completely Bounded Maps, Lecture Notes in Mathematics, vol. 1618 (2001), Springer-Verlag: Springer-Verlag Berlin, viii+198 pp. ·Zbl 0971.47016 |
[47] | Pisier, G.; Xu, Q., Non-commutative \(L_p\)-spaces, (Handbook of the Geometry of Banach Spaces, vol. 2 (2003), North-Holland: North-Holland Amsterdam), 1459-1517 ·Zbl 1046.46048 |
[48] | Reed, M.; Simon, B., Methods of Modern Mathematical Physics, I, Functional Analysis (1980), Academic Press Inc. ·Zbl 0459.46001 |
[49] | Ricard, É., A Markov dilation for self-adjoint Schur multipliers, Proc. Am. Math. Soc., 136, 12, 4365-4372 (2008) ·Zbl 1166.46037 |
[50] | Sakai, S., \( C^\ast \)-Algebras and \(W^\ast \)-Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 60 (1971), Springer-Verlag: Springer-Verlag New York-Heidelberg, xii+253 pp. ·Zbl 0219.46042 |
[51] | Spronk, N., Measurable Schur multipliers and completely bounded multipliers of the Fourier algebras, Proc. Lond. Math. Soc. (3), 89, 1, 161-192 (2004) ·Zbl 1047.43008 |
[52] | Takesaki, M., Theory of Operator Algebras, I (1979), Springer-Verlag: Springer-Verlag New York-Heidelberg, vii+415 pp. ·Zbl 0990.46034 |
[53] | Takesaki, M., Theory of Operator Algebras, III, Operator Algebras and Non-commutative Geometry, vol. 8 (2003), Springer-Verlag: Springer-Verlag Berlin, xxii+548 pp. ·Zbl 1059.46032 |
[54] | Terp, M., \( L_p\)-spaces associated with von Neumann algebras, (Notes (1981), Math. Institute, Copenhagen University) |
[55] | Tomiyama, J., Tensor products and approximation problems of \(C^\ast \)-algebras, Publ. Res. Inst. Math. Sci., 11, 1, 163-183 (1975/1976) ·Zbl 0319.46045 |
[56] | Xu, Q., \( H^\infty\) functional calculus and maximal inequalities for semigroups of contractions on vector-valued \(L_p\)-spaces, Int. Math. Res. Not., 2015, 14, 5715-5732 (2015) ·Zbl 1339.47055 |
[57] | Yeadon, F. J., Isometries of noncommutative \(L_p\)-spaces, Math. Proc. Camb. Philos. Soc., 90, 1, 41-50 (1981) ·Zbl 0483.46041 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.