Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Boundary ellipticity and limiting \(\mathrm{L}^1\)-estimates on halfspaces.(English)Zbl 07807342

Summary: We identify necessary and sufficient conditions on \(k\)th order differential operators \(\mathbb{A}\) in terms of a fixed halfspace \(H^+ \subset \mathbb{R}^n\) such that the Gagliardo-Nirenberg-Sobolev inequality\[\| D^{k - 1} u \|_{\mathrm{L}^{\frac{n}{n - 1}} (H^+)} \leqslant c \| \mathbb{A} u \|_{\mathrm{L}^1 (H^+)} \quad \text{for } u \in \mathrm{C}_c^\infty(\mathbb{R}^n, V)\]holds. This comes as a consequence of sharp trace theorems on \(H = \partial H^+\).

MSC:

26D10 Inequalities involving derivatives and differential and integral operators
35E05 Fundamental solutions to PDEs and systems of PDEs with constant coefficients
35G15 Boundary value problems for linear higher-order PDEs
35G35 Systems of linear higher-order PDEs

Cite

References:

[1]Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Commun. Pure Appl. Math., 12, 4, 623-727 (1959) ·Zbl 0093.10401
[2]Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Commun. Pure Appl. Math., 17, 1, 35-92 (1964) ·Zbl 0123.28706
[3]Aronszajn, N., On coercive integro-differential quadratic forms, (Conference on Partial Differential Equations (1954), University of Kansas), 94-106 ·Zbl 0067.32702
[4]Babadjian, J.-F., Traces of functions of bounded deformation, Indiana Univ. Math. J., 64, 4, 1271-1290 (2015) ·Zbl 1339.26030
[5]Bourgain, J.; Brezis, H., On the equation \(\operatorname{div} Y = f\) and application to control of phases, J. Am. Math. Soc., 16, 2, 393-426 (2003) ·Zbl 1075.35006
[6]Bourgain, J.; Brezis, H., New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., 9, 2, 277-315 (2007) ·Zbl 1176.35061
[7]Bousquet, P.; Van Schaftingen, J., Hardy-Sobolev inequalities for vector fields and canceling linear differential operators, Indiana Univ. Math. J., 63, 5, 1419-1445 (2014) ·Zbl 1325.46037
[8]Breit, D.; Diening, L.; Gmeineder, F., On the trace operator for functions of bounded \(\mathbb{A} \)- variation, Anal. PDE, 13, 2, 559-594 (2020) ·Zbl 1450.46017
[9]Brezis, H.; Van Schaftingen, J., Boundary estimates for elliptic systems with \(\operatorname{L}^1\)-data, Calc. Var. Partial Differ. Equ., 30, 3, 369-388 (2007) ·Zbl 1149.35025
[10]Burenkov, V. I., Sobolev Spaces on Domains, vol. 137 (1998), Teubner: Teubner Stuttgart ·Zbl 0893.46024
[11]Calderón, A. P.; Zygmund, A., On the existence of certain singular integrals, Acta Math., 88, 85-139 (1952) ·Zbl 0047.10201
[12]Calderón, A. P.; Zygmund, A., On singular integrals, Am. J. Math., 78, 289-309 (1956) ·Zbl 0072.11501
[13]Denk, R.; Hieber, M.; Prüss, J., Towards an \(\operatorname{L}^1\)-theory for vector-valued elliptic boundary value problems, Prog. Nonlinear Differ. Equ. Appl., 55, 141-147 (2003) ·Zbl 1039.35135
[14]De Leeuw, K.; Mirkil, H., A priori estimates for differential operators in \(\operatorname{L}_\infty\) norm, Ill. J. Math., 8, 1, 112-124 (1964) ·Zbl 0131.33202
[15]Diening, L.; Gmeineder, F., Continuity points via Riesz potentials for \(\mathbb{C} \)-elliptic operators, Q. J. Math., 71, 4, 1201-1218 (2020) ·Zbl 1467.31001
[16]Diening, L.; Gmeineder, F., Sharp trace and Korn inequalities for differential operators (2021), arXiv preprint
[17]Evans, L. C., Partial Differential Equations, Graduate Studies in Mathematics, vol. 19 (1998), American Mathematical Society ·Zbl 0902.35002
[18]Faraco, D.; Guerra, A., Remarks on Ornstein’s non-inequality in \(\mathbb{R}^{2 \times 2} \), Quart. J. Math., 73, 1, 17-21 (2022) ·Zbl 1489.35042
[19]Friedrichs, K. O., On the boundary-value problems of the theory of elasticity and Korn’s inequality, Ann. Math. (2), 48, 441-471 (1947) ·Zbl 0029.17002
[20]Fuchs, M.; Seregin, G., Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Lecture Notes in Mathematics, vol. 1749 (2000), Springer-Verlag: Springer-Verlag Berlin, vi+269 pp ·Zbl 0964.76003
[21]Gagliardo, E., Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Semin. Mat. Univ. Padova, 27, 284-305 (1957) ·Zbl 0087.10902
[22]Gmeineder, F.; Raiţă, B., Embeddings for \(\mathbb{A} \)-weakly differentiable functions on domains, J. Funct. Anal., 277, 12, Article 108278 pp. (2019) ·Zbl 1440.46031
[23]Gmeineder, F.; Raiţă, B.; Van Schaftingen, J., On limiting trace inequalities for vectorial differential operators, Indiana Univ. Math. J., 70, 5, 2133-2176 (2021) ·Zbl 1493.46054
[24]Hernandez, F.; Spector, D., Fractional integration and optimal estimates for elliptic systems (2020), arXiv preprint
[25]Hernandez, F.; Raiţă, B.; Spector, D., Endpoint \(L^1\) estimates for Hodge systems, Math. Ann., 385, 3-4, 1923-1946 (2023) ·Zbl 1511.35012
[26]Hörmander, L., Pseudo-differential operators and non-elliptic boundary problems, Ann. Math., 129-209 (1966) ·Zbl 0132.07402
[27]Kirchheim, B.; Kristensen, J., On rank one convex functions that are homogeneous of degree one, Arch. Ration. Mech. Anal., 221, 1, 527-558 (2016) ·Zbl 1342.49015
[28]Korn, A., Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen, Bull. Int. Acad. Sci. Cracov., 705-724 (1909) ·JFM 40.0884.02
[29]Leoni, G., A First Course in Sobolev Spaces (2017), American Mathematical Society ·Zbl 1382.46001
[30]G. Leoni, D. Spector, On the trace of \(W_a^{m + 1 , 1}( \mathbb{R}_+^{n + 1})\), 2024, in preparation.
[31]Lopatinskiĭ, Y. B., On a method of reducing boundary problems for a system of differential equations of elliptic type to regular integral equations, Ukr. Mat. Ž., 5, 123-151 (1953) ·Zbl 0052.10202
[32]Mironescu, P., Note on Gagliardo’s theorem “\(t r \operatorname{W}^{1 , 1} = \operatorname{L}^1\)”, Ann. Univ. Buchar. Math. Ser., 6(LXIV), 1, 99-103 (2015) ·Zbl 1389.46033
[33]Mironescu, P.; Russ, E., Traces of weighted Sobolev spaces. Old and new, Nonlinear Anal., Theory, Meth. Appl., 119, 354-381 (2015) ·Zbl 1331.46025
[34]Mityagin, B. S., On second mixed derivative, Dokl. Akad. Nauk, 123, 4, 606-609 (1958), Russian Academy of Sciences ·Zbl 0090.27302
[35]Ornstein, D., A non-inequality for differential operators in the \(\operatorname{L}_1\) norm, Arch. Ration. Mech. Anal., 11, 1, 40-49 (1962) ·Zbl 0106.29602
[36]Peetre, J., A counterexample connected with Gagliardo’s trace theorem, Comment. Math. Special Issue, 2, 277-282 (1979) ·Zbl 0442.46026
[37]Pelczynski, A.; Wojciechowski, M., Sobolev spaces in several variables in L1-type norms are not isomorphic to Banach lattices, Ark. Mat., 40, 2, 363-382 (2002) ·Zbl 1021.46026
[38]Pelczynski, A.; Wojciechowski, M., Spaces of functions with bounded variation and Sobolev spaces without local unconditional structure, J. Reine Angew. Math., 558, 109-157 (2003) ·Zbl 1032.46029
[39]Raiţă, B., \( \operatorname{L}^1\)-estimates for constant rank operators (2018), arXiv preprint
[40]Raiţă, B., Critical \(L^p\)-differentiability of \(B V^{\mathbb{A}} \)-maps and canceling operators, Trans. Am. Math. Soc., 372, 10, 7297-7326 (2019) ·Zbl 1429.26019
[41]Raiţă, B.; Skorobogatova, A., Continuity and canceling operators of order n on \(\mathbb{R}^n\), Calc. Var. Partial Differ. Equ., 59, 2, 1-17 (2020) ·Zbl 1443.47046
[42]Smith, K. T., Inequalities for formally positive integro-differential forms, Bull. Am. Math. Soc., 67, 4, 368-370 (1961) ·Zbl 0103.07602
[43]Smith, K. T., Formulas to represent functions by their derivatives, Math. Ann., 188, 1, 53-77 (1970) ·Zbl 0324.35009
[44]Spector, D.; Van Schaftingen, J., Optimal embeddings into Lorentz spaces for some vector differential operators via Gagliardo’s lemma, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., 30, 3, 413-436 (2019) ·Zbl 1442.46027
[45]Stolyarov, D., Weakly canceling operators and singular integrals, Proc. Steklov Inst. Math., 312, 1, 249-260 (2021) ·Zbl 1462.42025
[46]Stolyarov, D., Hardy-Littlewood-Sobolev inequality for \(p = 1\), Mat. Sb., 213, 6, 125-174 (2022) ·Zbl 1531.46020
[47]Strang, G.; Temam, R., Functions of bounded deformation, Arch. Ration. Mech. Anal., 75, 7-21 (1981) ·Zbl 0472.73031
[48]Triebel, H., (Theory of Function Spaces. Theory of Function Spaces, Monographs in Mathematics, vol. 78 (1983), Birkhäuser Verlag: Birkhäuser Verlag Basel) ·Zbl 0546.46028
[49]Uspenskiĭ, S. V., Imbedding theorems for classes with weights, Tr. Mat. Inst. Steklova, 60, 282-303 (1961) ·Zbl 0119.10103
[50]Van Schaftingen, J., Estimates for L1-vector fields, C. R. Math., 339, 3, 181-186 (2004) ·Zbl 1049.35069
[51]Van Schaftingen, J., Estimates for L1-vector fields under higher-order differential conditions, J. Eur. Math. Soc., 10, 4, 867-882 (2008) ·Zbl 1228.46034
[52]Van Schaftingen, J., Limiting fractional and Lorentz space estimates of differential forms, Proc. Am. Math. Soc., 235-240 (2010) ·Zbl 1184.35012
[53]Van Schaftingen, J., Limiting Sobolev inequalities for vector fields and canceling linear differential operators, J. Eur. Math. Soc., 15, 3, 877-921 (2013) ·Zbl 1284.46032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp