[1] | Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Commun. Pure Appl. Math., 12, 4, 623-727 (1959) ·Zbl 0093.10401 |
[2] | Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Commun. Pure Appl. Math., 17, 1, 35-92 (1964) ·Zbl 0123.28706 |
[3] | Aronszajn, N., On coercive integro-differential quadratic forms, (Conference on Partial Differential Equations (1954), University of Kansas), 94-106 ·Zbl 0067.32702 |
[4] | Babadjian, J.-F., Traces of functions of bounded deformation, Indiana Univ. Math. J., 64, 4, 1271-1290 (2015) ·Zbl 1339.26030 |
[5] | Bourgain, J.; Brezis, H., On the equation \(\operatorname{div} Y = f\) and application to control of phases, J. Am. Math. Soc., 16, 2, 393-426 (2003) ·Zbl 1075.35006 |
[6] | Bourgain, J.; Brezis, H., New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., 9, 2, 277-315 (2007) ·Zbl 1176.35061 |
[7] | Bousquet, P.; Van Schaftingen, J., Hardy-Sobolev inequalities for vector fields and canceling linear differential operators, Indiana Univ. Math. J., 63, 5, 1419-1445 (2014) ·Zbl 1325.46037 |
[8] | Breit, D.; Diening, L.; Gmeineder, F., On the trace operator for functions of bounded \(\mathbb{A} \)- variation, Anal. PDE, 13, 2, 559-594 (2020) ·Zbl 1450.46017 |
[9] | Brezis, H.; Van Schaftingen, J., Boundary estimates for elliptic systems with \(\operatorname{L}^1\)-data, Calc. Var. Partial Differ. Equ., 30, 3, 369-388 (2007) ·Zbl 1149.35025 |
[10] | Burenkov, V. I., Sobolev Spaces on Domains, vol. 137 (1998), Teubner: Teubner Stuttgart ·Zbl 0893.46024 |
[11] | Calderón, A. P.; Zygmund, A., On the existence of certain singular integrals, Acta Math., 88, 85-139 (1952) ·Zbl 0047.10201 |
[12] | Calderón, A. P.; Zygmund, A., On singular integrals, Am. J. Math., 78, 289-309 (1956) ·Zbl 0072.11501 |
[13] | Denk, R.; Hieber, M.; Prüss, J., Towards an \(\operatorname{L}^1\)-theory for vector-valued elliptic boundary value problems, Prog. Nonlinear Differ. Equ. Appl., 55, 141-147 (2003) ·Zbl 1039.35135 |
[14] | De Leeuw, K.; Mirkil, H., A priori estimates for differential operators in \(\operatorname{L}_\infty\) norm, Ill. J. Math., 8, 1, 112-124 (1964) ·Zbl 0131.33202 |
[15] | Diening, L.; Gmeineder, F., Continuity points via Riesz potentials for \(\mathbb{C} \)-elliptic operators, Q. J. Math., 71, 4, 1201-1218 (2020) ·Zbl 1467.31001 |
[16] | Diening, L.; Gmeineder, F., Sharp trace and Korn inequalities for differential operators (2021), arXiv preprint |
[17] | Evans, L. C., Partial Differential Equations, Graduate Studies in Mathematics, vol. 19 (1998), American Mathematical Society ·Zbl 0902.35002 |
[18] | Faraco, D.; Guerra, A., Remarks on Ornstein’s non-inequality in \(\mathbb{R}^{2 \times 2} \), Quart. J. Math., 73, 1, 17-21 (2022) ·Zbl 1489.35042 |
[19] | Friedrichs, K. O., On the boundary-value problems of the theory of elasticity and Korn’s inequality, Ann. Math. (2), 48, 441-471 (1947) ·Zbl 0029.17002 |
[20] | Fuchs, M.; Seregin, G., Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Lecture Notes in Mathematics, vol. 1749 (2000), Springer-Verlag: Springer-Verlag Berlin, vi+269 pp ·Zbl 0964.76003 |
[21] | Gagliardo, E., Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Semin. Mat. Univ. Padova, 27, 284-305 (1957) ·Zbl 0087.10902 |
[22] | Gmeineder, F.; Raiţă, B., Embeddings for \(\mathbb{A} \)-weakly differentiable functions on domains, J. Funct. Anal., 277, 12, Article 108278 pp. (2019) ·Zbl 1440.46031 |
[23] | Gmeineder, F.; Raiţă, B.; Van Schaftingen, J., On limiting trace inequalities for vectorial differential operators, Indiana Univ. Math. J., 70, 5, 2133-2176 (2021) ·Zbl 1493.46054 |
[24] | Hernandez, F.; Spector, D., Fractional integration and optimal estimates for elliptic systems (2020), arXiv preprint |
[25] | Hernandez, F.; Raiţă, B.; Spector, D., Endpoint \(L^1\) estimates for Hodge systems, Math. Ann., 385, 3-4, 1923-1946 (2023) ·Zbl 1511.35012 |
[26] | Hörmander, L., Pseudo-differential operators and non-elliptic boundary problems, Ann. Math., 129-209 (1966) ·Zbl 0132.07402 |
[27] | Kirchheim, B.; Kristensen, J., On rank one convex functions that are homogeneous of degree one, Arch. Ration. Mech. Anal., 221, 1, 527-558 (2016) ·Zbl 1342.49015 |
[28] | Korn, A., Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen, Bull. Int. Acad. Sci. Cracov., 705-724 (1909) ·JFM 40.0884.02 |
[29] | Leoni, G., A First Course in Sobolev Spaces (2017), American Mathematical Society ·Zbl 1382.46001 |
[30] | G. Leoni, D. Spector, On the trace of \(W_a^{m + 1 , 1}( \mathbb{R}_+^{n + 1})\), 2024, in preparation. |
[31] | Lopatinskiĭ, Y. B., On a method of reducing boundary problems for a system of differential equations of elliptic type to regular integral equations, Ukr. Mat. Ž., 5, 123-151 (1953) ·Zbl 0052.10202 |
[32] | Mironescu, P., Note on Gagliardo’s theorem “\(t r \operatorname{W}^{1 , 1} = \operatorname{L}^1\)”, Ann. Univ. Buchar. Math. Ser., 6(LXIV), 1, 99-103 (2015) ·Zbl 1389.46033 |
[33] | Mironescu, P.; Russ, E., Traces of weighted Sobolev spaces. Old and new, Nonlinear Anal., Theory, Meth. Appl., 119, 354-381 (2015) ·Zbl 1331.46025 |
[34] | Mityagin, B. S., On second mixed derivative, Dokl. Akad. Nauk, 123, 4, 606-609 (1958), Russian Academy of Sciences ·Zbl 0090.27302 |
[35] | Ornstein, D., A non-inequality for differential operators in the \(\operatorname{L}_1\) norm, Arch. Ration. Mech. Anal., 11, 1, 40-49 (1962) ·Zbl 0106.29602 |
[36] | Peetre, J., A counterexample connected with Gagliardo’s trace theorem, Comment. Math. Special Issue, 2, 277-282 (1979) ·Zbl 0442.46026 |
[37] | Pelczynski, A.; Wojciechowski, M., Sobolev spaces in several variables in L1-type norms are not isomorphic to Banach lattices, Ark. Mat., 40, 2, 363-382 (2002) ·Zbl 1021.46026 |
[38] | Pelczynski, A.; Wojciechowski, M., Spaces of functions with bounded variation and Sobolev spaces without local unconditional structure, J. Reine Angew. Math., 558, 109-157 (2003) ·Zbl 1032.46029 |
[39] | Raiţă, B., \( \operatorname{L}^1\)-estimates for constant rank operators (2018), arXiv preprint |
[40] | Raiţă, B., Critical \(L^p\)-differentiability of \(B V^{\mathbb{A}} \)-maps and canceling operators, Trans. Am. Math. Soc., 372, 10, 7297-7326 (2019) ·Zbl 1429.26019 |
[41] | Raiţă, B.; Skorobogatova, A., Continuity and canceling operators of order n on \(\mathbb{R}^n\), Calc. Var. Partial Differ. Equ., 59, 2, 1-17 (2020) ·Zbl 1443.47046 |
[42] | Smith, K. T., Inequalities for formally positive integro-differential forms, Bull. Am. Math. Soc., 67, 4, 368-370 (1961) ·Zbl 0103.07602 |
[43] | Smith, K. T., Formulas to represent functions by their derivatives, Math. Ann., 188, 1, 53-77 (1970) ·Zbl 0324.35009 |
[44] | Spector, D.; Van Schaftingen, J., Optimal embeddings into Lorentz spaces for some vector differential operators via Gagliardo’s lemma, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., 30, 3, 413-436 (2019) ·Zbl 1442.46027 |
[45] | Stolyarov, D., Weakly canceling operators and singular integrals, Proc. Steklov Inst. Math., 312, 1, 249-260 (2021) ·Zbl 1462.42025 |
[46] | Stolyarov, D., Hardy-Littlewood-Sobolev inequality for \(p = 1\), Mat. Sb., 213, 6, 125-174 (2022) ·Zbl 1531.46020 |
[47] | Strang, G.; Temam, R., Functions of bounded deformation, Arch. Ration. Mech. Anal., 75, 7-21 (1981) ·Zbl 0472.73031 |
[48] | Triebel, H., (Theory of Function Spaces. Theory of Function Spaces, Monographs in Mathematics, vol. 78 (1983), Birkhäuser Verlag: Birkhäuser Verlag Basel) ·Zbl 0546.46028 |
[49] | Uspenskiĭ, S. V., Imbedding theorems for classes with weights, Tr. Mat. Inst. Steklova, 60, 282-303 (1961) ·Zbl 0119.10103 |
[50] | Van Schaftingen, J., Estimates for L1-vector fields, C. R. Math., 339, 3, 181-186 (2004) ·Zbl 1049.35069 |
[51] | Van Schaftingen, J., Estimates for L1-vector fields under higher-order differential conditions, J. Eur. Math. Soc., 10, 4, 867-882 (2008) ·Zbl 1228.46034 |
[52] | Van Schaftingen, J., Limiting fractional and Lorentz space estimates of differential forms, Proc. Am. Math. Soc., 235-240 (2010) ·Zbl 1184.35012 |
[53] | Van Schaftingen, J., Limiting Sobolev inequalities for vector fields and canceling linear differential operators, J. Eur. Math. Soc., 15, 3, 877-921 (2013) ·Zbl 1284.46032 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.